Роликовая сварка нержавейки

Чем варить нержавеющую сталь в домашних условиях

При монтажных, ремонтных работах часто нужна сварка нержавейки. Использование стойких к коррозии легированных стальных сплавов давно приобрело массовый характер. Сварить нержавейку можно несколькими способами, используя бытовое оборудование. Для некоторых необходимы дорогие промышленные автоматы. В небольшом обзоре кратко представлены все виды горячего соединения легированных сталей.

Особенности сварки деталей из нержавеющей стали

Сначала о том, можно ли варить легированный металл как черный. Да, ММА, TIG MIG – все эти способы актуальны. Но при сварке нержавеющей стали нужно учитывать некоторые особенности сплавов:

  • высокий коэффициент термического расширения, складывать детали из нержавеющей стали нужно с зазором;
  • высокая теплопроводность нержавейки, чтобы не создавать большую температуру в рабочей зоне, заготовки с содержанием углерода меньше 0,2%, предварительно прогревают, сварочный ток снижают на 20%;
  • высокое сопротивление нержавеющих сталей, металл быстро нагревается, поэтому для сварочных работ подбирают специальные электроды длиной 35 см;
  • при нагреве хромоникелевой нержавейки образуются термостойкие пленки оксидов легирующих элементов, процесс сварки из-за этого затрудняется, рабочую зону необходимо охлаждать.

Варить нержавейку в домашних условиях нужно, учитывая особенностей стали, иначе соединение получится некачественным.

Подготовительные работы

Чтобы правильно сварить нержавейку, перед проведением работ требуется провести ряд работ:

  • заготовки предварительно очищают от грязи, пыли, снимают с поверхности оксидный слой до металлического блеска щеткой, мелким напильником или наждачной бумагой;
  • кромки толще 4 мм разделывают болгаркой или спиливают под углом;
  • нержавейку толще 7 мм подвергают предварительному нагреву, температура зависит от марки стали;
  • детали укладывают с зазором, его размер определяют по справочнику.

Перед проваркой шва стык прихватывают в нескольких местах, чтобы детали не смещались во время работы.

Распространенные способы сварки нержавеющей стали

Любые способы горячего соединения высокоуглеродистых сплавов подходят для сварки нержавейки в домашних условиях, но прочность соединения будет разной. Наплавочные электродуговые швы надежны, но не рассчитаны на разнонаправленную нагрузку. Тонколистовую нержавейку лучше варить аргоном, для них наплавка не нужна, главное уберечь металл от прожогов. Полуавтоматическая с использованием инвертора – универсальная, подходит для многих марок нержавейки, работы с деталями разной толщины. Каждый из способов стоит рассмотреть подробнее.

Сварка покрытыми электродами

Электродуговой метод ММА чаще всего используют для нержавейки, если к соединениям не предъявляют особых требований. При выборе электродов руководствуются ГОСТ 10052−75. В стандарте указано, чем варят нержавейку, легированную хромом, никелем, железом, тугоплавкими металлами. Электроды делятся на две группы. Стержни с основным видом обмазки, в состав которой входят карбонаты кальция, магния, ими варят легированный металл на обратной полярности, подключают их «+». Рутиловая обмазка содержит оксид титана, такие стержни применяют при токе любой полярности, подключают к «+» и «-» контактам. Они меньше разбрызгиваются, реже залипают.

Полуавтоматом

Качественно заварить нержавейку, используя присадочную проволоку, поможет технология MIG с подачей углекислого газа в область расплава. Полуавтомат обеспечивает равномерную подачу присадки в рабочую зону. Проволока подбирается под вид сплава – основной легирующий компонент. Выпускают омедненную присадку, порошковую с каналом, заполненным флюсом, алюминиевую. В качестве источника тока используют выпрямитель или инвертор. Дуга создается примерно так же, как в электродуговой сварке. Контакт «+» подводится к горелке, по ней попадает на подающий проволоку мундштук. Одновременно с проволокой подается газовая смесь, образующая защитную атмосферу.

Полуавтоматом варят детали:

  • до 4 мм (короткой дугой);
  • толще 4 мм, используя метод струйного переноса.

Импульсная сварка с минимальным разбрызгиванием ванны расплава применима для нержавеющей стали любой толщины.

Ручная и полуавтоматическая в среде аргона

Технология TIG (ручной) и MIG (полуавтоматической) применяется для работы с тонкой нержавейкой, предусматривает использование вольфрамовых тугоплавких электродов для создания электродуги. Подачу аргона начинают до розжига дуги, заканчивают через 20 секунд после угасания.

Другие способы сварки нержавейки

На производстве используют другие методы соединения легированных деталей. Для соединения заготовок на промышленном оборудовании не применяется наплавочный материал, нержавеющий сплав расправляется ограниченно, на большую глубину.

Холодная сварка под большим давлением

Технология основана на способности сплавов преобразовывать кинетическую энергию в тепловую. При сдавливании внутренняя структура стали изменяется с выделением энергии, нержавейка становится пластичной. Один слой вдавливается в другой с образованием диффузного слоя. Сварка нержавеющей стали производится односторонним или двухсторонним давлением. На прессы устанавливают специальные штампы. Получаются очень аккуратные точечные или линейные соединения без окалины, трещин, внутренних напряжений в рабочей зоне.

Контактная сварка нержавейки

Ток подается на два неплавящихся электрода из цветных сплавов, заготовки помещаются между ними. При подаче тока электроды с усилием сжимают. Варят нержавеющую сталь только в зоне контакта, дуга прошивает детали насквозь, расплавляет. Ручные сварочные клещи используют для сварки тонкой нержавейки до 2 мм. Заготовки потолще соединяют аппаратами с усилителями, чтобы можно было продавить зону контакта. Образуется точка размером с площадь электрода.

Лазерным лучом

Для нержавеющей стали применяют технику точечного и шовного метода. Приварить детали можно только встык. При соединении заготовок внахлест в рабочей зоне создаются остаточные напряжения. Ванна расплава ограничена за счет молниеносного воздействия луча. Нержавейка разогревается мгновенно, шов образуется прочным, мелкозернистым. Расплав полностью заполняет стык. В быту лазерная сварка используется редко из-за высокой стоимости оборудования.

Плазменная сварка

Принцип основан на ионизации газа под действием дуги в специальной камере – плазмотроне. Электрическое поле создается с использованием тугоплавкого вольфрамового электрода. Направленный поток плазмы быстро расплавляет заготовки в месте соединения до высокой температуры. Оборудование бывает двух типов:

  • ручное, вторым контактом для образования дуги становится металлическая деталь;
  • автоматическое, дуга создается между электродом и стенкой камеры.

Ручной плазмой сваривают тонкие заготовки до 3 мм, автоматами – толщиной до 160 мм. Кромки предварительно разделывают, но проваривается шов сразу, за одну проходку.

Завершающий этап

Качество соединения проверяют до зачистки нержавейки после сварки. Если нет трещин, приступают к удалению окалины, сажи, чтобы на металле образовался оксидный слой. Это делают двумя способами:

  • механическим с помощью железной щетки, наждачки, шлифовального инструмента;
  • химическим, используя соляную и серную кислоту с последующей промывкой поверхности.

После обработки рабочей зоны на шов накладывают пассивирующий слой.

Самостоятельный монтаж или ремонт металлоизделий из нержавейки требует определенной квалификации от сварщика. Важно учитывать особенности сплава, правильно подобрать электроды, параметры тока. Особенно аккуратно нужно обращаться с тонкостенными деталями. Они быстро разогреваются, деформируются.

Роликовая сварка

Роликовая сварка, схема

Общая характеристика

Роликовая сварка является таким усложненным видом точечной сварки, когда точки так тесно, с перекрытием, сближены между собой, что образуется полоса сплошного соединения. В отличии от других видов этой сварки, она применяется она для изготовления различного рода тонкостенных изделий, требующих:

Ход роликовой сварки

Примеры роликовой сварки

Толщина свариваемых деталей обычно не превосходит 3 мм.

Диаграммы изменения тока, давления и скорости вращения роликов приведены на рис.

  • Давление в течение всей сварки остается неизменным.
  • Во избежание перегрева ток пропускается отдельными импульсами.
  • Сила тока, длительность сварочных импульсов и пауз между ними выбираются так, чтобы, во-первых, при каждом импульсе образовалась полноценная сварочная точка и, во-вторых, чтобы эти точки перекрывали друг друга «а 1/2 — 2/3 их длины.

пример роликовой сварки 2

пример роликовой сварки 3

пример роликовой сварки 4

пример роликовой сварки 5

пример роликовой сварки 6

пример роликовой сварки 7

Перемещение деталей относительно роликов или вращение роликов обычно непрерывное, как показано на рис. Реже применяется так называемая шаговая сварка (рис, б), когда ролики вращаются с остановками. Ток включается при неподвижных роликах, во время паузы они поворачиваются и перемещаются по детали на некоторое расстояние (1,5—4,5 м) для сваривания очередной точки и т. д. Механическая часть машины здесь существенно усложняется, линейная скорость сварки ниже, чем при первом способе. Ввиду того, что образование и отвердевание ядра происходит при неподвижных роликах, охлаждение поверхности детали здесь более интенсивнее, а уплотнение расплавленного ядра более полное, так как они происходят в момент продолжающегося давления неподвижного ролика (при первом способе затвердевание ядра происходит частично уже тогда, когда зона сварки вышла из- под электродов).

Читать еще:  Отличие пищевой нержавейки от обычной

Роликовая сварка в схеме

Приминение

Примеры роликовой сварки

Шаговую сварку целесообразно применять в тех случаях, когда особенно опасен перегрев наружной поверхности детали, например при сварке плакированного дюралюминия и в других случаях.

На рис, в приведена сварка с непрерывным течением тока. Применяется она относительно редко — для соединения тонких (до 1 мм) листов малоуглеродистой стали.

Параметрами режима роликовой сварки являются сила тока, давление, скорость сварки, длительность импульса и паузы, ширина рабочей поверхности роликов. Оказывает некоторое влияние я диаметр роликов.

  1. Сила тока в 1,5—2 раза больше, чем при точечной сварке.
  2. Это объясняется тем, что во избежание перегрева поверхности листов режим сварки каждой элементарной точки должен быть достаточно жестким
  3. Увеличение тока требуется также в связи с шунтированием, которое венду непосредственной близости смежных точек достигает значительной величины. Примерно в таком же соотношении принимается и давление.

Скорость сварки а суммарное время импульса и паузы находятся в следующей зависимости:

где Vсв —скорость сварки в м/мин;

а — шаг точек в мм:

tсекtn —длительность импульса и паузы в сек.

Шаг точек зависит от толщины н рода металла. Для малоуглеродистых и низколегированных сталей шаг составляет 2,8—3,2 от толщины более тонкой детали, для нержавеющей стали — 2,4—2,8 и для легких и цветных металлов и сплавов 2,0—2,4.

Пример сварочных электродов для сварки

Аппарат для роликовой сварки

Физические характеристики.

Время сварки и время паузы между собою должны находиться в определенном соотношении. Для малоуглеродистой стали tсв= (1 — 2) tn, для нержавеющей стали tсe — (0,7 / 1,5)tn и для легких сплавов — tce=(0,2/0,5)„. Выбору большей скорости соответствует уменьшение длительности всего цикла» а значит» и длительности каждого импульса. Это потребует увеличения тока и давления. Обычно скорость роликовой сварки лежит в пределах 0,5-2,0 м/мин. С увеличением толщины необходимая механическая и электрическая мощность машин должна сильно увеличиваться, а скорость сварки снижаться. Поэтому, начиная с толщины 3 мм и выше» более выгодно применять не роликовую сварку, а автоматическую сварку под слоем флюса.

Ширина рабочей поверхности роликов влияет на процесс сварки аналогично диаметру электродов при точечной сварке.

От диаметра роликов зависит его износ и в некоторой мере нагрев поверхности деталей. С увеличением диаметра улучшается охлаждение ролика и детали, сильно уменьшается износ ролика. Диаметр ролика принимается в пределах 150—300лш.

Для сварки легких сплавов на нормальных машинах сила тока должна быть примерно в два раза большей а время импульса в два раза меньше, чем для малоуглеродистой стали.

Давление принимается таким же, как при сварке стали. Как и при точечной сварке этих сплавов. электроды изготовляются из чистой меди; рабочей поверхности их иногда придают сферическую форму.

Очистка поверхности деталей и электродов должна быть еще более тщательной, чем при точечной сварке.

Аппарат для роликовой сварки

Сварка металла.

Сварка нержавеющей стали осуществляется при силе тока примерно в два раза меньшей и давлении в 1,5 раза большем по сравнению со сваркой малоуглеродистой стали. Обязательно интенсивное наружное охлаждение.

Подготовка под сварку.

Очистка поверхности для роликовой сварки производится также, как и для точечной сварки, но тщательность очистки должна быть повышенной.

Перед роликовой сваркой детали с помощью приспособлений собираются и свариваются на точечной машине в нескольких точках.

Направление деталей по месту сварки часто осуществляется вручную. При повышенных скоростях сварки (больше 1,5 м мин) точное направление деталей, особенно громоздких, становится затруднительным, поэтому рекомендуется создавать специальные поддерживающие и направляющие приспособления.

Наличие зазоров после сборки и прихватки может привести к образованию выплесков и под плавлению поверхности деталей; зазоры после прихватки должны быть устранены или сведены к минимуму.

Ширина нахлестки или отбортовки должна быть не менее 12—18 мм при толщине стали 1-2 мм, что необходимо для предотвращения раздавливания металла кромок и для беспрепятственной деформации при сварке.

Сварка нержавеющей стали – какую технологию выбрать?

Сварка нержавеющей стали должна производиться с учетом ее физических свойств и химического состава. В противном случае процесс не принесет ожидаемого результата.

1 Особенности нержавеющей стали, затрудняющие ее сварку

В соответствии с современной классификацией, нержавеющая сталь, отличающаяся повышенной стойкостью к коррозии, причисляется к группе высоколегированных сталей. Содержание в нержавейке хрома – главного легирующего компонента – варьируется в пределах 12–30 процентов. Также в состав такой стали зачастую вводят специальные добавки с целью повышения ее антикоррозионных и сугубо механических параметров.

К таковым относят, в частности, титан, марганец, никель, молибден. Кроме того, сейчас осуществляется закалка стали с высоким содержанием хрома, повышающая многие ее физические характеристики. Прежде чем разобраться с тем, какие способы сварки нержавеющей стали применяются в настоящее время, имеет смысл ознакомиться с некоторыми ее характеристиками, влияющими на свариваемость подобных изделий. К таким причисляют:

  • Сварка углеродистых сталей – как правильно выполнить сварочный процесс?
  • Сварка легированных сталей – просто и понятно об особенностях процесса
  • Сварка аустенитных сталей – обо всех тонкостях процесса понятно и просто
  1. Относительно высокий показатель коэффициента расширения (линейного), обуславливающего существенную литейную усадку металла. Из-за этого при сварке отмечается повышенная деформация стали, которая может наблюдаться и после проведения сварочных работ. В тех случаях, когда между соединяемыми конструкциями значительной толщины не оставляют зазора, высока вероятность образования крупных трещин.
  2. Меньшую в 1,5–2 раза теплопроводность нержавейки (если сравнивать ее с низкоуглеродистым металлом). Становится причиной увеличения теплоты, что ведет к проплавлению свариваемых поверхностей в месте их соединения. В связи с этим технология сварки нержавеющей стали предполагает снижение на 15–20 процентов силы тока по сравнению с его величиной, необходимой для сварки обычных сталей.
  3. Явление снижения антикоррозионных свойств нержавеющих сталей при несоблюдении рекомендованного режима термической обработки. Обусловлено оно формированием карбида хрома и железа по краям зерен, когда температура становится более 500 °С, и носит название межкристаллитной коррозии. Существует несколько способов решения означенной проблемы. Один из них заключается в поливке холодной водой свариваемых поверхностей (подходит для аустенитных хромоникелевых сталей).
  4. Сильный нагрев (из-за повышенного электрического сопротивления) электродов с хромоникелевыми стержнями. Чтобы избежать перегрева, используют электроды длиной до 35 сантиметров.

2 Сварка нержавеющей стали – основные способы

На данный момент существуют следующие технологии сварки сталей с большим содержанием хрома:

  • аргонодуговая в режиме DC/AC TIG с использованием вольфрамового электрода;
  • сварка покрытыми электродами (режим ММА);
  • аргоновая полуавтоматическая в режиме MIG с применением нержавеющей проволоки;
  • холодная (без плавления поверхностей, осуществляется под давлением);
  • шовная и точечная контактная.

Непосредственно перед проведением процесса сварки нержавейку следует обезжирить (ацетон, авиационный бензин), чтобы обеспечить устойчивость дуги и сделать пористость шва более низкой, а также зачистить до блеска кромки поверхностей, которые планируется соединить. После этого можно приступать к сварке по выбранной технологии. Далее мы подробно опишем самые популярные способы сварки и очень кратко те, которые редко используются.

3 Технология ММА – электроды для сварки нержавеющей стали

Самой распространенной считается сварка покрытыми электродами (ММА). Такой метод очень часто применяется домашними мастерами. Он подходит для тех случаев, когда к качеству сварки не предъявляется очень жестких требований. Важно только грамотно подобрать электроды для нержавеющей стали, которые делятся на два типа:

Читать еще:  Какая нержавейка лучше 304 или 430

  • из двуокиси титана с рутиловым покрытием: ими можно осуществлять сварку на постоянном (полярность – обратная) и переменном токе, подобные электроды характеризуются малым разбрызгиванием при использовании и стабильной дугой, обеспечивающей постоянное горение;
  • с основным покрытием (как правило, оно создается карбонатами магния и кальция): годятся для применения на постоянном токе (полярность – обратная).

Выбирать электроды для сварки нержавеющей стали лучше всего по ГОСТ 10052, в котором четко указаны их типы и соответствие каждого из них нержавейке конкретного состава. Если вы знаете марку стали, которую требуется сваривать, Госстандарт подскажет, какой вам выбрать электрод. Причем нужно помнить, что выбранное изделие обязано обеспечить сварным поверхностям заданные характеристики (механические параметры и требуемую коррозионную стойкость).

4 Аргоновая сварка в режиме AC/DC TIG и полуавтоматическая MIG

Технология с применением вольфрамовых электродов (аргоновая сварка) оптимальна для сваривания изделий, к которым выдвигаются особые требования по качественным показателям, при необходимости соединения конструкций из тонкого металла. Чаще всего она используется для сваривания трубопроводов из нержавейки, которые служат для перемещения под давлением газов либо жидкостей, дымовых нержавеющих труб.

Особенности данной технологии следующие:

  • во избежание попадания вольфрама в сварочную ванну используется бесконтактный поджог дуги (при невозможности выполнить это требование зажигание допускается выполнять на угольной плите и только потом переносить дугу на металл);
  • осуществлять сварку можно и на переменном, и на постоянном токе;
  • конкретный сварочный режим подбирается по толщине деталей, которые соединяются (устанавливается сечение электрода для сварки нержавеющей стали и присадочной проволоки, сила и полярность тока, расход аргона, скорость проведения процедуры);
  • уровень легирования присадочной проволоки должен быть выше, чем у основной стали;
  • чтобы металл не окислялся, а сварочная зона не нарушалась, желательно не производить электродом колебательных движений.

Сократить расход вольфрамового электрода при выполнении сварочных работ можно очень просто. Для этого не нужно в течение 10–15 секунд отключать подачу аргона после окончания сварочной процедуры.

Суть в том, что подобный обдув электрода существенно уменьшает его окисление. Полуавтоматическая сварка по своей технологии почти не отличается от рассмотренного выше варианта соединения поверхностей. Просто при такой методике нержавеющая проволока подается не вручную, а механизировано. Понятно, что обработка, которой подвергается нержавеющая сталь (сварка изделий), проходит в режиме MIG проще, точнее и быстрее.

Данная полуавтоматическая технология позволяет применять несколько различных техник для сварки разных по толщине материалов:

  • для поверхностей с большой толщиной – струйный перенос;
  • для тонколистового металла – сварка короткой дугой;
  • универсальная техника – импульсная сварка (признается самым экономически выгодных способом соединения деталей из нержавейки).

5 Менее распространенные технологии сварки

К таковым относится:

Лазерная сварка нержавеющей стали: обеспечивает отсутствие эффекта разупрочнения в зоне отпуска термически упрочненной стали, появления холодных и горячих трещин, большую скорость остывания шва, наименьшие параметры зерна. Методика востребована на предприятиях тракторной и автомобильной промышленности, а также в некоторых отраслях машиностроения.

Сварка давлением (иначе называется холодной): базируется на соединении деталей на уровне их кристаллических решеток под давлением без плавления заготовок. Поверхности свариваются в тавр либо внахлест по двухсторонней (обе детали подвергаются пластической деформации) или односторонней (давление воздействует лишь на один лист) схеме.


Роликовая и точечная (контактная) сварка: подходит для металлических листов толщиной не более 2 миллиметров. В этом случае используется оборудование для сварки нержавеющей стали, на котором выполняется сварка и других металлов.

Роликовая сварка нержавейки

В данной статье, мы поговорим непосредственно о процессе сварки нержавеющей стали. Этот процесс является довольно кропотливым и трудоемким. Обусловливается это тем, что процесс сварки может затрудняться из-за образования тугоплавких карбидов, а так же при охрупчивании, когда температура нагревания поднимается свыше 350 градусов, в следствии сигматизации выделяется избыточный феррит, это способствует слабой стойкости к межкристаллитной коррозии.

Методы сварки нержавейки

Сварку нержавеющей стали на практике выполняют с помощью таких методов:

  • При толщине материала более чем 1,5 мм используют метод ручной дуговой сварки;
  • Для сварки тонких листов и труб используют метод дуговой сварки вольфрамовым электродом в инертном газе, такая сварка в среде активных газов отличается своей высокой производительностью;
  • Для листов с толщиной 0,8 мм применяется импульсивная дуговая сварка с плавящимся электродом в инертном газе;
  • Листы толщиной менее чем 0,8 – 3,0 мм подвергаются сварке с дугой со струйным переносом металла;
  • Такой тип сварки как плазменный, применяется для широкого диапазона толщины листов и на сегодня становится популярным методом сварки нержавеющей стали;
  • Для металлов толщиной более 10 мм применяют дуговую сварку под флюсом.

Так же следует отметить такие методы сварки как: точечная, роликовая, лазерная, высокочастотная, сварка сопротивления и другие.

Итак, следующий этап это обработка сварных швов. Поверхность сварного соединения нержавеющей стали образует пористый оксидный слой, который в своем составе содержит хром. Этот слой способствует значительному ослаблению стойкости к воздействию коррозии. Поверхность оксидного слоя возникает из стали, после чего под оксидным слоем образуется т.н. с низким содержанием хрома. Когда есть необходимость увеличить стойкость сварного соединения к коррозии, то оксидный слой и слой с низким содержанием хрома необходимо удалить. Этот процесс осуществляется с помощью термообработки, в данном случае термообработка способна выполнять растворение внутри стальной конструкции, благодаря этому процессу сглаживаются все возможные отличия присадочных материалов. Необходимо знать то, что разрешается использовать только те принадлежности, которые предназначены для обработки нержавейки, это могут быть: ленты и круги для шлифовки, щетки для обработки нержавеющего проката, дроби из нержавеющей стали.

Обработка сварных швов

Эффективным методом обработки сварных швов является травление. Если правильно выполнить метод травления, то это позволит качественно устранить оксидный слой и зону с низким содержанием хрома. Обработка по этому методу выполнения путем покрытия, погружения или наружного нанесения пасты, все зависит от условий. В основном, при травлении используют смешанные кислоты (азотная кислота/плавиковая кислота) в пропорциях 8 – 20% азотной кислоты и 0,5 – 5% плавиковой кислоты, с добавлением H2O (вода). Время травления зависит не только от концентрации кислот, но и от температуры, сорта проката и толщины окалины (кислотоупорный прокат по сравнению с нержавеющим прокатом требует продолжительной обработки). После метода травления конструкция становится стойкой к воздействию коррозии.

Мы ознакомились с основными методами сварки нержавейки и теперь можно смело поговорить о специальных требованиях по сварке при изготовлении менержавейки. При подготовке вышеперечисленных сплавов и сталей, нужно учитывать специальные требования и основные особенности:

  • Сварные конструкции МКК и основного металла в зоне около шва, могут подвергшейся сварке до температуры 450 – 650 градусов;
  • Если образуются кристаллизационные трещины, то это является следствием образования аустенитной структуры металла шва;
  • Охрупчивание может происходить в температурных диапазонах от 350 – 550 градусов из-за высокого содержания феррита и в диапазонах 550 – 850 градусов, при возникновении сигматизации. Например, охрупчивание сварных швов может возникнуть в процессе штамповки горячих днищ, в случае если сварка происходит с применением присадочных материалов, которые дают чрезмерное содержание феррита. Для того чтобы избежать охрупчивания сварочных соединений в процессе обработки, следует ограничить содержание феррита в пределах 8 – 10%.
  • Усиленное коробление сварных конструкций, несет за собой следствие низкой теплопроводности и коэффициент термического расширения, который больше в 1,5 раз в сравнении с углекислыми сталями;
  • Увеличение длины прихваток и уменьшение расстояния между ними в сравнении с соединениями низколегированных сталей, сварных соединений и из-за большого коэффициента линейного расширения;
  • Если в структуре металла шва есть наличие феррита, то при температуре ниже 100 градусов снижается его пластичность и охрупчивание;
Читать еще:  Сварка нержавейки полуавтоматом в среде аргона

Чтобы увеличить стойкость сварных соединений к воздействию коррозии необходимо:

  • Использовать стали и присадочные материалы, содержащие минимальное количество углерода;
  • Добавлять в легированную сталь другие вспомогательные элементы (титан, ниобий, никель);
  • Применять стабилизирующий отжиг от 870 до 900 градусов, выдерживать от двух до трех часов и охлаждать на воздухе.

Уменьшить перегрев нержавеющей стали и обеспечить оптимальные механические свойства для стойкости к внешним факторам можно благодаря сварке соединений на максимально высокой скорости. Каждый последующий проход сварки нужно выполнять после охлаждения и тщательной зачистки конструкции.

Повышение коррозийной стойкости сварных соединений

Если вы будите соблюдать следующие требования, то сможете обеспечить повышение коррозийной стойкости сварных соединений:

  • Все внешние швы заваривают в последнюю очередь, а в случаях двусторонней сварки выполняется третий облицовочный шов, который обращен к внешней среде. Если такая возможность отсутствует, то следует принимать все необходимые меры чтобы уменьшить нагрев металла первого слоя. Чтобы не допускать нагревания металла сварку следует вести на максимально высокой скорости с применением минимальных токов. Для того чтобы устранить горячие трещины при сварке, нужно применить присадочные материалы, которые образуют сварные швы, эти швы обладают аустенитно-ферритной структурой и содержат ферритную фазу более 2%.

Если необходимо предотвратить горячие трещины в соединениях толщиной 10 мм и более, то рекомендуется сделать следующее:

  • Метод ручной дуговой сварки выполнять при минимальной длине дуги;
  • Сварку под флюсом выполнять на низкой скорости с минимальными подходами;
  • Тщательно выполнить шлефовку или заплавить все кратеры. Запрещается выводить все кратеры на основной металл. В том случае, если произошел обрыв дуги, то необходимо убедиться в отсутствии горячей трещины, если же обнаружили трещину, то кратер необходимо удалить механическим методом;
  • Сварку соединений большой толщины выполнять с помощью электродов, которые обеспечивают повышенную стойкость металла к горячим трещинам (но при этом слабую стойкость к коррозии)

К сварке стабильноаустенитных сталей допускаются только те сварщики, которые уже имеют опыт и навыки по борьбе с горячими трещинами.

Роликовая сварка

Роликовая сварка, схема

Общая характеристика

Роликовая сварка является таким усложненным видом точечной сварки, когда точки так тесно, с перекрытием, сближены между собой, что образуется полоса сплошного соединения. В отличии от других видов этой сварки, она применяется она для изготовления различного рода тонкостенных изделий, требующих:

Ход роликовой сварки

Примеры роликовой сварки

Толщина свариваемых деталей обычно не превосходит 3 мм.

Диаграммы изменения тока, давления и скорости вращения роликов приведены на рис.

  • Давление в течение всей сварки остается неизменным.
  • Во избежание перегрева ток пропускается отдельными импульсами.
  • Сила тока, длительность сварочных импульсов и пауз между ними выбираются так, чтобы, во-первых, при каждом импульсе образовалась полноценная сварочная точка и, во-вторых, чтобы эти точки перекрывали друг друга «а 1/2 — 2/3 их длины.

пример роликовой сварки 2

пример роликовой сварки 3

пример роликовой сварки 4

пример роликовой сварки 5

пример роликовой сварки 6

пример роликовой сварки 7

Перемещение деталей относительно роликов или вращение роликов обычно непрерывное, как показано на рис. Реже применяется так называемая шаговая сварка (рис, б), когда ролики вращаются с остановками. Ток включается при неподвижных роликах, во время паузы они поворачиваются и перемещаются по детали на некоторое расстояние (1,5—4,5 м) для сваривания очередной точки и т. д. Механическая часть машины здесь существенно усложняется, линейная скорость сварки ниже, чем при первом способе. Ввиду того, что образование и отвердевание ядра происходит при неподвижных роликах, охлаждение поверхности детали здесь более интенсивнее, а уплотнение расплавленного ядра более полное, так как они происходят в момент продолжающегося давления неподвижного ролика (при первом способе затвердевание ядра происходит частично уже тогда, когда зона сварки вышла из- под электродов).

Роликовая сварка в схеме

Приминение

Примеры роликовой сварки

Шаговую сварку целесообразно применять в тех случаях, когда особенно опасен перегрев наружной поверхности детали, например при сварке плакированного дюралюминия и в других случаях.

На рис, в приведена сварка с непрерывным течением тока. Применяется она относительно редко — для соединения тонких (до 1 мм) листов малоуглеродистой стали.

Параметрами режима роликовой сварки являются сила тока, давление, скорость сварки, длительность импульса и паузы, ширина рабочей поверхности роликов. Оказывает некоторое влияние я диаметр роликов.

  1. Сила тока в 1,5—2 раза больше, чем при точечной сварке.
  2. Это объясняется тем, что во избежание перегрева поверхности листов режим сварки каждой элементарной точки должен быть достаточно жестким
  3. Увеличение тока требуется также в связи с шунтированием, которое венду непосредственной близости смежных точек достигает значительной величины. Примерно в таком же соотношении принимается и давление.

Скорость сварки а суммарное время импульса и паузы находятся в следующей зависимости:

где Vсв —скорость сварки в м/мин;

а — шаг точек в мм:

tсекtn —длительность импульса и паузы в сек.

Шаг точек зависит от толщины н рода металла. Для малоуглеродистых и низколегированных сталей шаг составляет 2,8—3,2 от толщины более тонкой детали, для нержавеющей стали — 2,4—2,8 и для легких и цветных металлов и сплавов 2,0—2,4.

Пример сварочных электродов для сварки

Аппарат для роликовой сварки

Физические характеристики.

Время сварки и время паузы между собою должны находиться в определенном соотношении. Для малоуглеродистой стали tсв= (1 — 2) tn, для нержавеющей стали tсe — (0,7 / 1,5)tn и для легких сплавов — tce=(0,2/0,5)„. Выбору большей скорости соответствует уменьшение длительности всего цикла» а значит» и длительности каждого импульса. Это потребует увеличения тока и давления. Обычно скорость роликовой сварки лежит в пределах 0,5-2,0 м/мин. С увеличением толщины необходимая механическая и электрическая мощность машин должна сильно увеличиваться, а скорость сварки снижаться. Поэтому, начиная с толщины 3 мм и выше» более выгодно применять не роликовую сварку, а автоматическую сварку под слоем флюса.

Ширина рабочей поверхности роликов влияет на процесс сварки аналогично диаметру электродов при точечной сварке.

От диаметра роликов зависит его износ и в некоторой мере нагрев поверхности деталей. С увеличением диаметра улучшается охлаждение ролика и детали, сильно уменьшается износ ролика. Диаметр ролика принимается в пределах 150—300лш.

Для сварки легких сплавов на нормальных машинах сила тока должна быть примерно в два раза большей а время импульса в два раза меньше, чем для малоуглеродистой стали.

Давление принимается таким же, как при сварке стали. Как и при точечной сварке этих сплавов. электроды изготовляются из чистой меди; рабочей поверхности их иногда придают сферическую форму.

Очистка поверхности деталей и электродов должна быть еще более тщательной, чем при точечной сварке.

Аппарат для роликовой сварки

Сварка металла.

Сварка нержавеющей стали осуществляется при силе тока примерно в два раза меньшей и давлении в 1,5 раза большем по сравнению со сваркой малоуглеродистой стали. Обязательно интенсивное наружное охлаждение.

Подготовка под сварку.

Очистка поверхности для роликовой сварки производится также, как и для точечной сварки, но тщательность очистки должна быть повышенной.

Перед роликовой сваркой детали с помощью приспособлений собираются и свариваются на точечной машине в нескольких точках.

Направление деталей по месту сварки часто осуществляется вручную. При повышенных скоростях сварки (больше 1,5 м мин) точное направление деталей, особенно громоздких, становится затруднительным, поэтому рекомендуется создавать специальные поддерживающие и направляющие приспособления.

Наличие зазоров после сборки и прихватки может привести к образованию выплесков и под плавлению поверхности деталей; зазоры после прихватки должны быть устранены или сведены к минимуму.

Ширина нахлестки или отбортовки должна быть не менее 12—18 мм при толщине стали 1-2 мм, что необходимо для предотвращения раздавливания металла кромок и для беспрепятственной деформации при сварке.

Ссылка на основную публикацию
Adblock
detector