Зависит ли напряжение дуги от сварочного тока?

Электрическая дуговая сварка

Электрическая дуга в процессе сварки является важным рабочим элементом, посредством которого осуществляется своеобразная обработка (расплавление) кромок свариваемых деталей. Поэтому свойства и характеристики дуги имеют большое практическое значение.

Воздух при обыкновенных условиях не проводит электрический ток. Во время горения дуги газы и пары, находящиеся в дуговом промежутке, становятся проводниками за счет образования в дуге электрически заряженных частиц — электронов и ионов. Электроны, имеющие отрицательный заряд, перемещаются к положительному электроду (аноду), а положительные ионы — к отрицательному электроду (катоду). Направленное перемещение заряженных частиц и создает электрический ток в дуге.

Процесс образования заряженных частиц называется ионизацией, а газ, в котором появились заряженные частицы и который вследствие этого получил способность проводить электрический ток, называется ионизированным. Сущность процессов ионизации объясняется теорией строения вещества, согласно которой атомы всех элементов состоят из отрицательных частиц (электронов), положительных частиц (протонов) и нейтральных частиц. Величина отрицательного заряда атома равна положительному заряду, поэтому атом в целом электрически нейтрален. Нейтральными также являются и молекулы, состоящие из атомов. Однако если сообщить нейтральным молекуле или атому достаточное количество энергии, они могут ионизироваться, т. е. от них может отделиться один или несколько электронов. Тогда основная часть молекулы или атома будет нести положительный заряд и называться положительным ионом. Кроме того, источником электронов в дуговом промежутке служит катод, способный при высоких температурах нагрева излучать со своей поверхности свободные электроны.

Наряду с ионизацией в дуге постоянно происходят обратные процессы, приводящие к уменьшению количества заряженных частиц. Поэтому при горении дуги все время должна поддерживаться достаточная степень ионизации.

Ионизация газа происходит главным образом за счет подводимой к дуге электрической энергии. Количество энергии, необходимое для ионизации молекулы различных газов и паров, различно. Оно характеризуется величиной потенциала ионизации, показывающей, какое наименьшее количество энергии достаточно для полного освобождения электрона от связи с ядром атома. Чем больше в дуге газов и паров с низким потенциалом ионизации, тем интенсивнее протекает ионизация, устойчивее горит дуга, ниже ее температура. При сварке металлическим электродом температура дуги составляет примерно 5000—6000°.

Дуга зажигается (возбуждается) замыканием электрода на деталь. Минимальное напряжение между электродом и деталью, необходимое для зажигания дуги, составляет при сварке металлическим электродом на постоянном токе 30—35 в и на переменном токе 45—50 в.

Фиг.1.Характеристики дуг

Фиг.2.Зависимость напряжения на дуге от длины дуги

Напряжение на дуге при установившемся ее горении зависит от состава электродного стержня и покрытия, длины дуги и силы сварочного тока. Зависимость напряжения от силы тока при разной длине дуги в случае ручной дуговой сварки показана на фиг. 1, где каждая из линий, выражающих эту зависимость, носит название «характеристика дуги». По характеристикам видно, что напряжение на дуге увеличивается с увеличением длины дуги и уменьшается с ростом тока до 40—50 а. Дальнейшее увеличение тока практически не влияет на характеристику дуги.

Приведенные характеристики позволяют заключить, что во время сварки напряжение на дуге зависит только от ее длины. Эту зависимость можно выразить формулой:

Uд=a + bl, где Uд — напряжение на дуге в в; а и b — постоянные коэффициенты, зависящие от состава электродного стержня и покрытия ( а показывает суммарную величину падения напряжения у поверхностей катода и анода в в; b показывает падение напряжения на 1 мм длины дуги в в мм); 1 — длина дуги в мм.

Величина коэффициента а и b при сварке различными электродами различна. В литературе приводятся следующие данные коэффициентов: для меловых электродов а=10 в, b = 2 в/мм (К. К. Хренов); для электродов УОНИИ-13 а= 16÷18 в, b=2,8 в/мм (В. М. Рыбаков, К. П. Вощанов).

Приведенные на фиг. 1 характеристики дуги наблюдаются при сварке, когда плотность тока на электроде относительно невелика. Во время автоматической сварки под флюсом большими токами и сварки в среде защитных газов напряжение на дуге при возрастании тока (в пределах применяемых режимов сварки) не остается постоянным, а несколько возрастает. В этих случаях наблюдаются возрастающие характеристики дуги.

Зависимость напряжения на дуге от ее длины может быть изображена графически (фиг. 2). Такие графики имеют большое практическое значение. Они позволяют точно поддерживать длину дуги с помощью вольтметра, включенного в сварочную цепь для замера напряжения на дуге.

Билеты экзамена для проверки знаний специалистов сварочного производства 1 уровень

БИЛЕТ 2

ВОПРОС 1. Какое положение электрода при сварке приводит к увеличению глубины провара при РДС?

1. Сварка «углом вперед».

2. Сварка «углом назад».

3. Сварка вертикальным электродом.

ВОПРОС 2. Зависит ли напряжение дуги от сварочного тока при использовании источников питания с падающей характеристикой.

3. Зависит при малых и больших величинах сварочного тока.

ВОПРОС 3. К какому классу сталей относятся сварочные проволоки Св-12Х11НМФ, Св-10Х17Т, Св-06Х19Н9Т?

ВОПРОС 4. Какой из перечисленных факторов в большей степени влияет на ширину шва при РДС?

1. Поперечные колебания электрода.

2. Напряжение на дуге.

3. Величина сварочного тока.

ВОПРОС 5. С какой целью один из концов электрода не имеет покрытия?

1. Для обеспечения подвода тока к электроду.

2. С целью экономии покрытия.

3. Для определения марки электрода.

ВОПРОС 6. Какие должны быть род и полярность тока при сварке соединений из углеродистых сталей электродами с основным покрытием?

1. Переменный ток.

2. Постоянный ток обратной полярности.

3. Постоянный ток прямой полярности.

ВОПРОС 7. Какие требования предъявляются к помещению для хранения сварочных материалов?

1. Сварочные материалы хранят в специально оборудованном помещении без ограничения температуры и влажности воздуха.

2. Сварочные материалы хранят в специально оборудованном помещении при положительной температуре воздуха.

3. Сварочные материалы хранят в специально оборудованном помещении при температуре не ниже 15 0С и относительной влажности воздуха не более 50%.

ВОПРОС 8. Для сварки какой группы сталей применяют электроды типов Э50, Э50А, Э42А, Э55?

Читать еще:  Как пользоваться газовым резаком

1. Для сварки конструкционных сталей повышенной и высокой прочности.

2. Для сварки углеродистых сталей.

3. Для сварки высоколегированных сталей.

ВОПРОС 9. Для чего нужна спецодежда сварщику?

1. Для защиты сварщика от выделяющихся вредных аэрозолей.

2. Для защиты сварщика от поражения электрическим током.

3. Для защиты сварщика от тепловых, световых, механических и других воздействий сварочного процесса.

ВОПРОС 10. Как изменяется сила сварочного тока увеличением длины дуги при ручной дуговой сварки штучными электродами?

1. Увеличение длины дуги ведет к уменьшению силы тока.

2. Увеличение длины дуги ведет к увеличению на силы сварочного тока.

3. Величина сварочного тока остается неизменной.

ВОПРОС 11. Чем регламентируется режим прокалки электродов?

1. Производственным опытом сварщика.

2. Техническим паспортом на сварочные материалы.

3. Рекомендациями надзорных органов.

ВОПРОС 12. С какой целью производят прокалку электродов?

1. Для удаления серы и фосфора.

2. Для повышения прочности электродного покрытия.

3. Для удаления влаги из покрытия электродов.

ВОПРОС 13. Какие стали относятся к углеродистым сталям?

1. Сталь Ст3сп5, Сталь 10, Сталь 15, Сталь 20Л, Сталь 20К, Сталь 22К.

3. 08Х14МФ, 1Х12В2МФ, 25Х30Н.

ВОПРОС 14. Что обозначает буква и следующая за ней цифр в маркировке сталей и сплавов?

1. Клейма завода-изготовителя.

2. Обозначения номера плавки и партии металла.

3. Условное обозначение легирующего элемента в стали и его содержание в процентах.

ВОПРОС 15. Какие стали относятся к группе удовлетворительно сваривающихся?

1. С содержанием углерода 0,25-0,35 %.

2. С содержанием серы и фосфора до 0,05 %.

3. С содержанием кремния и марганца до 0,5 %.

ВОПРОС 16. Какие из перечисленных ниже нарушений технологии могут привести к пористости швов?

1. Плохая зачистка кромок перед сваркой от ржавчины, следов смазки.

2. Большая сила тока при сварке.

3. Малый зазор в стыке.

ВОПРОС 17. От чего в большей степени зависит величина деформации свариваемого металла?

1. От склонности стали к закалке.

2. От неравномерности нагрева.

3. От марки электрода, которым производят сварку.

ВОПРОС 18. Укажите величину зазора между свариваемыми кромками листовых элементов толщиной до 5 мм по ГОСТ 5264-80?

ВОПРОС 19. В какой цвет рекомендуется окрашивать стены и оборудование цехов сварки?

1. Красный, оранжевый.

3. Серый (стальной) цвет с матовым оттенком.

ВОПРОС 20. Укажите условные обозначения сварных соединений?

1. С — стыковое, У — угловое, Т — тавровое, Н — нахлесточное; буква и цифра, следующая за ней – условное обозначение сварного соединения.

2. С — стыковое, У — угловое, Н — нахлесточное, Т — точечная сварка; цифры после букв указывают метод и способ сварки.

3. С — стыковое, У — угловое, Т — тавровое, П — потолочный шов; цифры после букв указывают методы и объем контроля.

Для перехода на следующую страницу, воспользуйтесь постраничной навигацией ниже

Страницы: 1 2 3 4 5 6 7 8 9 10

Электрическая дуговая сварка

Электрическая дуга в процессе сварки является важным рабочим элементом, посредством которого осуществляется своеобразная обработка (расплавление) кромок свариваемых деталей. Поэтому свойства и характеристики дуги имеют большое практическое значение.

Воздух при обыкновенных условиях не проводит электрический ток. Во время горения дуги газы и пары, находящиеся в дуговом промежутке, становятся проводниками за счет образования в дуге электрически заряженных частиц — электронов и ионов. Электроны, имеющие отрицательный заряд, перемещаются к положительному электроду (аноду), а положительные ионы — к отрицательному электроду (катоду). Направленное перемещение заряженных частиц и создает электрический ток в дуге.

Процесс образования заряженных частиц называется ионизацией, а газ, в котором появились заряженные частицы и который вследствие этого получил способность проводить электрический ток, называется ионизированным. Сущность процессов ионизации объясняется теорией строения вещества, согласно которой атомы всех элементов состоят из отрицательных частиц (электронов), положительных частиц (протонов) и нейтральных частиц. Величина отрицательного заряда атома равна положительному заряду, поэтому атом в целом электрически нейтрален. Нейтральными также являются и молекулы, состоящие из атомов. Однако если сообщить нейтральным молекуле или атому достаточное количество энергии, они могут ионизироваться, т. е. от них может отделиться один или несколько электронов. Тогда основная часть молекулы или атома будет нести положительный заряд и называться положительным ионом. Кроме того, источником электронов в дуговом промежутке служит катод, способный при высоких температурах нагрева излучать со своей поверхности свободные электроны.

Наряду с ионизацией в дуге постоянно происходят обратные процессы, приводящие к уменьшению количества заряженных частиц. Поэтому при горении дуги все время должна поддерживаться достаточная степень ионизации.

Ионизация газа происходит главным образом за счет подводимой к дуге электрической энергии. Количество энергии, необходимое для ионизации молекулы различных газов и паров, различно. Оно характеризуется величиной потенциала ионизации, показывающей, какое наименьшее количество энергии достаточно для полного освобождения электрона от связи с ядром атома. Чем больше в дуге газов и паров с низким потенциалом ионизации, тем интенсивнее протекает ионизация, устойчивее горит дуга, ниже ее температура. При сварке металлическим электродом температура дуги составляет примерно 5000—6000°.

Дуга зажигается (возбуждается) замыканием электрода на деталь. Минимальное напряжение между электродом и деталью, необходимое для зажигания дуги, составляет при сварке металлическим электродом на постоянном токе 30—35 в и на переменном токе 45—50 в.

Фиг.1.Характеристики дуг

Фиг.2.Зависимость напряжения на дуге от длины дуги

Напряжение на дуге при установившемся ее горении зависит от состава электродного стержня и покрытия, длины дуги и силы сварочного тока. Зависимость напряжения от силы тока при разной длине дуги в случае ручной дуговой сварки показана на фиг. 1, где каждая из линий, выражающих эту зависимость, носит название «характеристика дуги». По характеристикам видно, что напряжение на дуге увеличивается с увеличением длины дуги и уменьшается с ростом тока до 40—50 а. Дальнейшее увеличение тока практически не влияет на характеристику дуги.

Приведенные характеристики позволяют заключить, что во время сварки напряжение на дуге зависит только от ее длины. Эту зависимость можно выразить формулой:

Читать еще:  Переработка пластика в домашних условиях

Uд=a + bl, где Uд — напряжение на дуге в в; а и b — постоянные коэффициенты, зависящие от состава электродного стержня и покрытия ( а показывает суммарную величину падения напряжения у поверхностей катода и анода в в; b показывает падение напряжения на 1 мм длины дуги в в мм); 1 — длина дуги в мм.

Величина коэффициента а и b при сварке различными электродами различна. В литературе приводятся следующие данные коэффициентов: для меловых электродов а=10 в, b = 2 в/мм (К. К. Хренов); для электродов УОНИИ-13 а= 16÷18 в, b=2,8 в/мм (В. М. Рыбаков, К. П. Вощанов).

Приведенные на фиг. 1 характеристики дуги наблюдаются при сварке, когда плотность тока на электроде относительно невелика. Во время автоматической сварки под флюсом большими токами и сварки в среде защитных газов напряжение на дуге при возрастании тока (в пределах применяемых режимов сварки) не остается постоянным, а несколько возрастает. В этих случаях наблюдаются возрастающие характеристики дуги.

Зависимость напряжения на дуге от ее длины может быть изображена графически (фиг. 2). Такие графики имеют большое практическое значение. Они позволяют точно поддерживать длину дуги с помощью вольтметра, включенного в сварочную цепь для замера напряжения на дуге.

Сварочная дуга

Сообщение об ошибке

Сварочная дуга

Сварочная дуга представляет собой электрический дуговой разряд в ионизированной смеси газов, паров металлов и компонентов, входящих в состав электродных покрытий, флюсов и других средств.

Физические и электрические свойства сварочной дуги

Для возникновения электрического разряда газовый промежуток между электродами должен быть ионизирован. Процесс ионизации протекает в следующем порядке. При соприкосновении торца электрода и свариваемого изделия выступы шероховатых поверхностей мгновенно разогреваются током до температуры плавления и испарения вследствие большого омического сопротивления контакта. После отрыва электрода от изделия разогретый торец электрода (отрицательный полюс) начинает испускать электроны, устремляющиеся к аноду под действием разности потенциалов между электродами. При столкновении с электродными частицами металлов, которые в виде паров имеются в межэлектродном промежутке, электроны ионизируют их. Ионизация мгновенно охватывает весь межэлектродный промежуток, и он становится электропроводным. В процессе горения дуги ионизация поддерживается благодаря высокой температуре.

Напряжение на дуге равно сумме падений напряжений в трех ее основных (рис. 1) областях:

где Uд — напряжение на дуге, В; UK — падение напряжения на катоде, В; Uс-падение напряжения в столбе дуги, В; Uа — падение напряжения на аноде, В; Iд — сила тока в дуге.

Рис.1. Распределение падения напряжения в дуге

Зависимость напряжения дуги от силы сварочного тока называют статической (вольтамперной) характеристикой дуги.

В общем виде статическая характеристика дуги показана на рис. 2. При малых значениях силы тока в электроде (область 1) статическая характеристика дуги падающая. При средних значениях силы тока (при ручной и автоматической дуговой сварке под флюсом) напряжение на дуге не зависит от силы тока (область 2, жесткая характеристика). В этом случае с достаточной точностью статическая характеристика может быть выражена уравнением

где lд — длина дуги, мм; а, b — постоянные коэффициенты, зависящие от материала электродов, давления и свойств газовой среды.

Рис.2. Общий вид статической характеристики дуги

Из этого уравнения следует, что напряжение на дуге, при всея прочих равных условиях, будет зависеть от длины столба дуги.

Возрастающая статическая характеристика дуги (область 3, см. рис. 2) получается при большой силе тока (при автоматической сварке под флюсом или при сварке в среде защитных газов).

Сварочная дуга переменного тока

Вследствие того, что мгновенные значения переменного тока 100 раз в секунду переходят через нуль, причем меняет также свое местонахождение катодное пятно, являющееся источником вылета электронов, ионизация дугового промежутка получается менее стабильной и сварочная дуга менее устойчива, при прочих равных условиях, по сравнению с дугой постоянного тока.

Если дуга включена в цепь переменного тока последовательно с активным сопротивлением, то мгновенные значения напряжения источника и сварочного тока совпадают по фазе. В каждый полупериод дуга угасает и вновь зажигается (восстанавливается) через некоторый промежуток времени, пока напряжение источника тока поднимается до некоторой величины, называемой напряжением повторного зажигания.

Зажигание, дуги характеризуется началом прохождения тока в сварочной цепи. В каждый полупериод имеется перерыв в прохождении тока при угасаниях дуги. Эти перерывы называют временами угасания дуги. Момент угасания происходит при несколько меньшем мгновенном значении напряжения источника, чем в момент зажигания, для которого требуются более высокие значения для получения ионизации остывшего промежутка. Время угасания дуги зависит от максимального значення напряжения зажигания дуги и частоты переменного тока.

Время восстановления дуги снижается при повышении напряжения холостого хода и при использовании повышенных частот. Это время уменьшается также и при снижении напряжения зажигания. Из указанных мер повышения устойчивости горения дуги наиболее распространено снижение напряжения зажигания, чего достигают применением электродов с ионизирующими обмазками.

Величина напряжения зажигания зависит от целого ряда факторов, в первую очередь от величины силы тока дуги. С увеличением силы сварочного тока напряжение зажигания дуги снижается.

Для сварки открытой дугой напряжение зажигания Uз и напряжение горения дуги Uд имеют следующую зависимость:

При сварке на больших силах тока под флюсом напряжение зажигания почти равно напряжению горения дуги.

Повышение напряжения холостого хода источника питания ограничено правилами техники безопасности, а использование высоких частот требует применения специальной аппаратуры. Общепринятой мерой повышения стабильности сварочной дуги переменного тока является включение в сварочную цепь катушек со стальным сердечником (дросселей), которые позволяют вести сварочные работы металлическими электродами при напряжении сварочного трансформатора порядка 60 — 65В и стандартной частоте. При этом в обмазке электродов должно быть достаточное количество ионизирующих компонентов.

Зависит ли напряжение дуги от сварочного тока

Большая Энциклопедия Нефти и Газа

Напряжение дуги увеличивается с увеличением длины дуги, при этом становится больше ширина шва и несколько уменьшается глубина проплавления. [2]

Читать еще:  Можно ли болгаркой резать бетон?

Напряжение дуги зависит от величины сварочного тока и длины дуги. Эта зависимость называется статической ( вольт-амперной) характеристикой дуги. На рис. 24 приведены примерные формы статических характеристик дуг длиной 2 и 3 мм. Как видно из кривых, напряжение дуги резко падает при небольших значениях тока. Для больших токов, которые обычно применяются при автоматической сварке, напряжение дуги не зависит от тока, а определяется только длиной дуги. [4]

Напряжение дуги изменяется пропорционально длине дуги. С увеличением длины дуги повышается ее напряжение и возрастает доля тепла, идущая на плавление флюса и металла. В результате этого ширина шва увеличивается, а глубина провара и высота усиления уменьшаются. [5]

Напряжение дуги зависит от ее длины: чем длиннее дуга, тем выше в ней напряжение. С увеличением напряжения дуги увеличивается ширина шва и уменьшается глубина провара. Напряжение дуги автоматически устанавливается в зависимости от выбранной величины сварочного тока при данной длине дуги. [6]

Напряжение дуги активизирует катушку реле напряжения РНЗ-1. Реле напряжения срабатывает: три нормально разомкнутых контакта включают трехфазный мотор М перемещения трактора, а нормально замкнутый контакт разомкнет щетки мотора УМ — 22, якорь которого получит нормальное питание от потенциометра R — Rz и изменит направление своего вращения. С этого момента начинается установившийся процесс работы схемы при сварке: трактор передвигается вдоль свариваемого изделия, а электродная проволока подается в зону горения сварочной дуги. [8]

Напряжение дуги при установившемся режиме не зависит от силы тока, а зависит только от длины дуги, которая при сварке плавящимся электродом может многократно меняться, что связано в значительной степени с процессами плавления и переноса металла ( см. гл. [10]

Напряжение дуги увеличивается линейно до максимального значения и далее остается неизменным до момента погасания дуги. [12]

Напряжение дуги ограничивается условием электрической прочности оборудования. При срабатывании автомата напряжение на кольцах ротора ы / U — ия не должно превышать половины амплитуды испытательного напряжения ротора. [14]

Напряжение дуги является очень важным элементом режима сварки. [15]

Страницы: 1 2 3 4 5

Электрическая дуга при сварке — стабильная, но изменчивая

Сварные конструкции сегодня можно встретить в самых разных сферах производства. Например, невозможно найти ни одного здания, при создании которого не применялись бы сварные конструкции. Именно поэтому к технологиям производства самых разных сварных конструкций предъявляются повышенные требования. И при этом каждая конструкция, в зависимости от ее особенностей, требует отдельного комплексного подхода.

В данной статье автор попытался дать довольно детальный ответ на вопросы: «что такое ток сварочной дуги, и какие бывают виды тока?». Простыми словами о том, что обычно пишут в учебниках о токе сварочной дуги. Рассматривается дуга постоянного и переменного токов.

В этой статье ознакомимся с нормированием сварочной работы, с организацией рабочего места и труда, которые сильно влияют на производительность труда, посмотрим основные формулы, которые помогут рассчитать нормы работы.

Влияние напряжения на дуге на форму шва

В понятие режим сварки под слоем флюса включают силу тока, напряжение на дуге и скорость сварки. Такие технологические факторы, как диаметр электродной проволоки и скорость подачи проволоки, устанавливают исходя из условий получения нужной силы тока.

Сила тока оказывает существенное влияние на глубину проплавления и незначительное влияние на ширину шва. С увеличением силы тока почти пропорционально увеличивается глубина проплавления. По данным Б. И. Медовара, увеличение силы тока на 100 а приводит к увеличению глубины проплавления в среднем на 1 мм в случае сварки стыковых швов без разделки.

На глубину проплавления оказывает влияние также род тока. Так, при сварке на постоянном токе глубина проплавления при обратной полярности больше, чем при прямой.

Фиг.72.Влияние напряжения на дуге на форму шва

На величину силы тока влияет диаметр электрода и скорость его подачи.

В свою очередь диаметр электрода оказывает влияние на глубину проплавления. Так, при одной и той же силе тока глубина проплавления увеличивается с уменьшением диаметра электродной проволоки. Последнее связано с увеличением плотности тока.

Напряжение на дуге оказывает существенное влияние на ширину шва и лишь незначительное на глубину проплавления. С увеличением напряжения значительно увеличивается ширина шва при некотором уменьшении глубины проплавления. Влияние напряжения на размеры шва представлено на фиг. 72.

Как и в случае ручной дуговой сварки, более чувствителен к режимам сварки металл небольшой толщины. В связи с этим при сварке такого металла следует применять постоянный ток, дающий более постоянное напряжение на дуге по сравнению с переменным током.

Для хорошего формирования шва при сварке под слоем флюса необходимо выдерживать определенное соотношение между напряжением и силой тока. Подобные соотношения приведены в табл. 60.

Скорость сварки также оказывает влияние на глубину проплавления и ширину шва (8—25 м/час). Увеличение скорости сварки в интервале от 8 до 25м/час приводит к увеличению глубины проплавления с одновременным уменьшением ширины шва. Дальнейшее увеличение скорости сварки в интервале 20—30 м/час приводит к уменьшению глубины проплавления с одновременным уменьшением ширины шва.

Сварочные свойства дуги и протекающие в ней процессы

Сварочная дуга – это главный элемент электродуговой сварки. Именно сварочная дуга является главным «поставщиком» тепловой энергии, благодаря которой и происходит расплавление сварочного электрода и металла с последующим образованием сварного шва. От того, насколько стабильна дуга, зависит прочность и непрерывность сварного соединения.

Ручная дуговая сварка занимает первое место как способ соединения металлоконструкций. Статья расскажет о том, как зависит техника дуговой сварки от остальных факторов, и как правильно двигать электродом, чтобы получить качественный сварной шов.

В статье дается подробный анализ характеристикам сварочной дуги и их особенностям в различных видах сварки. Говорится о вольтамперной характеристике, эластичности дуги и показателях КПД. Указывается, почему важно следить за этими характеристиками в процессе сваривания.

Ссылка на основную публикацию
Adblock
detector