Вакуумный метод контроля сварных соединений

Контроль качества сварных соединений

К неразрушающим методам контроля относятся: визуальный, испытания на прочность и непроницаемость, цветной, магнитный, просвечивание рентгеновским и гамма-излучением, ультразвуковой и др.

В зависимости от требований, предъявляемых к сварному изделию, и характера дефектов, которые необходимо обнаружить, применяют соответствующие методы контроля.

Качество сварных соединений и конструкции в целом обычно определяют несколькими методами. Универсального метода контроля не существует. Перед контролем сварные соединения должны быть тщательно очищены от шлака и других загрязнений.

Визуальный (внешний осмотр) является обязательным при контроле качества сварки любым методом. Сварные соединения рассматривают невооруженным глазом или через лупу при хорошем (не бьющем в глаза) освещении; замеряют швы с помощью инструментов и шаблонов.

Этим методом можно определить выходящие на поверхность поры и трещины, незаделанные кратеры, подрезы, неравномерность ширины и высоты шва, наплывы, отступление размеров шва от требований чертежа и другие внешние дефекты. Обнаруженные в результате визуального контроля дефекты следует устранить.

Прочность и непроницаемость готового изделия проверяют проведением следующих испытаний. Специальными механическими испытаниями с приложением статической или динамической нагрузки определяют разрушающие нагрузки или усилия, не вызывающие разрушения сварных изделий; гидравлическими испытаниями (чаще всего водой) определяют прочность и непроницаемость сосудов (котлов различного назначения, баллонов для жидкостей и газов), трубопроводов, судовых конструкций, резервуаров для хранения нефтепродуктов и т. п.

Сосуды и трубопроводы, работающие при избыточном давлении, испытывают давлением, обычно превышающим величину рабочего давления в 1,5—2 раза. Контроль прочности должен проводиться с соблюдением установленных правил техники безопасности.

Гидравлические испытания громоздки и непроизводительны, способствуют возникновению коррозии, их нельзя проводить при отрицательных температурах. Использование воды не позволяет обнаружить мельчайшие неплотности в шве.

Это объясняется тем, что вода является одной из наиболее полярных жидкостей. Молекулы ее несут значительный электрический (дипольный) момент, что вызывает повышение вязкости и плотности воды в слоях, контактирующих со стенками неплотности. Толщина слоя адсорбционно связанной воды составляет, около 1,5-10 -4 мм.

Жидкость в адсорбированных слоях приобретает упругость, близкую к упругости твердых тел. Из других источников адсорбированная вода при толщине слоя в 0,9-10 -4 мм обладает модулем сдвига 1,9х10 8 дин/см 2 , что только в 300 раз меньше модуля сдвига свинца.

Таким образом, чем меньше поперечное сечение неплотности, тем значительнее влияет адсорбированный слой воды на движение жидкости в неплотностях. В очень малых неплотностях (например, диаметром 3-10- 4 мм) пристенные слои жидкости способны заполнить все их сечение и исключить или сильно ограничить движение воды.

По другим данным с помощью воды под давлением 1,4 кГ/см 2 можно обнаружить неплотности диаметром до 10 -3 мм. Поэтому в последние годы гидравлические испытания стали заменять пневматическими (например, при испытании отсеков судов и трубопроводов).

Непроницаемость соединения определяется еще и следующими методами: вакуумным, керосиновым, цветным, газоэлектрическим.

Пневматический метод испытания предусматривает подачу сжатого воздуха в изделие с заглушенными отверстиями. Давление воздуха при испытаниях устанавливают исходя из условий безопасности и требований, предъявляемых к изделию.

Сварные соединения смачивают мыльным раствором или опускают в воду. Неплотности определяют по образующимся мыльным пузырькам или пузырькам воздуха. Смачивать сварные соединения мыльной водой или опускать сварное изделие в ванну с водой следует после создания необходимого давления воздуха в контролируемом сосуде.

При испытании обдувом сжатый воздух под давлением 4—5кГ/см 2 подводится к сварному соединению по гибкому шлангу с наконечником. Расстояние между концом наконечника и швом должно быть не более 50 мм.

Во время обдува противоположную сторону шва смачивают мыльным раствором и тщательно осматривают, чтобы обнаружить мыльные пузырьки, появляющиеся в неплотностях.

При давлении воздуха 1кГ/см 2 можно обнаружить неплотности (поры) диаметром около 3-10 -3 мм.

Вакуумный метод является разновидностью пневматического и заключатся в следующем (рис. 181). Проверяемый участок сварного соединения, наиболее удобный для контроля, смачивают мыльным раствором и на него устанавливают вакуум-камеру.

Верх камеры сделан из плексигласа, поэтому прозрачен, а по контуру нижней части прикреплена прокладка из мягкой резины. С помощью вакуум-насоса или эжектора в камере создается разрежение, вследствие чего она плотно по контуру резиновой прокладки прижимается атмосферным давлением к данному участку изделия.

Благодаря созданной разности давлений по обе стороны сварного соединения атмосферный воздух проникает через неплотности шва в вакуум-камеру, при этом появляются мыльные пузырьки, видимые через прозрачную верхнюю часть камеры. Места неплотностей отмечают мелом на металле рядом с камерой.

С помощью трехходового крана в камеру впускают атмосферный воздух и затем убирают ее с проверенного участка сварного соединения. Отметки мела с основного металла переносят на неплотные места шва, после чего устраняют дефекты и повторно проверяют эти места на непроницаемость.

Рис. 181. Схема вакуумного и керосино-вакуумного метода контроля непроницаемости сварных соединений:1 — губчатая резина, 2— плексиглас 3 — трехходовой кран, 4 — к вакуум-насосу, 5 — керосин, в — вакуумируемое пространство, 7 — мыльный пузырек.

Вакуумный метод приемлем для контроля непроницаемости стыковых, нахлесточных, тавровых и трехгранных соединений во всех положениях в пространстве. Производительность вакуумного метода в среднем 50—60м шва в 1 ч. Этот метод контроля позволяет обнаружить неплотности диаметром до 4,2-10 -3 мм (при перепаде давлений до 0,84кГ/см 2 ).

Вакуумным методом можно проверять сварные соединения в конструкциях, имеющих форму незамкнутого объема, а также при одностороннем доступе к ним; контроль можно применять вслед за сваркой, не дожидаясь окончания изготовления конструкции в целом; испытания можно проводить при перепаде давлений до 1 кГ/см 2 , не опасаясь разрушения конструкции.

Вакуумный метод контроля нашел широкое применение при проверке непроницаемости сварных соединений днищ, стенок и перекрытий резервуаров (рис. 182), сварных стыков трубопроводов.

Рис. 182. Контроль непроницаемости сварных соединений.

Этот метод внедряется также в судостроении и других отраслях промышленности.

Рамки вакуумные для вакуумно-пузырькового метода течеискания

Способы получения:

Доставка по адресу — по запросу

Вакуумно-пузырьковые рамки

Вакуумные рамки предназначены для вакуумно-пузырькового метода течеискания. Вакуумные рамки разработаны для поиска дефектов — сквозных течей в сварных соединениях в соответствии с ГОСТ 24054-80, ГОСТ Р 51780-2001, ПНАЭ Г-7-019-89, ПНАЭ Г-7-008-89, другими стандартами и отраслевыми требованиями.

Особенности

Запатентованная технология производства

Технология изготовления вакуумных камер запатентована и включает в себя ряд передовых решений. В первую очередь – это отсутствие клеевого слоя в местах прилегания экрана к профилю уплотнителя. Сам профиль представляет собой цельную конструкцию – замкнутый контур без клеевых соединений.

Нет клеевого стыка – нечему рваться при регулярных нагрузках.

Преимущества

  1. Простота выполнения контроля.
  2. Контроль объектов на этапе сборки конструкции.
  3. Контроль герметичности крупногабаритных объектов.
  4. Контроль объектов с односторонним доступом к поверхности.
  5. Вакуумными рамками можно контролировать объекты, в которых нельзя создать минимально необходимое избыточное давление пробного газа.
  6. Минимальные требования к подготовке поверхности объекта контроля, отсутствие дорогостоящих расходных материалов.
  7. Широкий диапазон рабочих температур*.
  8. Время проведения контроля 1 метра сварного стыка — не более 30 секунд.
  9. Пороговая чувствительность способа при контроле вакуумными рамками сопоставима с чувствительностью таких способов, как: способ гелиевого щупа, способ обдува гелием, пневматическим надувом воздуха и способа с использованием люминесцентных проникающих жидкостей.

* — Контроль на герметичность с использованием вакуумно-пузырьковых рамок может выполняться при температурах, соответствующих точкам замерзания / испарения используемых пено-плёночных индикаторов.

Типы вакуумных рамок* (Вид сварного шва / Название рамки):

  • Плоский стык / Плоская
  • Нахлёстный / Нахлёст
  • Уторный / Внутренний угол
  • 3-х гранный внутренний угол / Треугольник
  • Сферический / Круг
  • Внешний угол 90 градусов

* — Тип вакуумной камеры (рамки) и её размеры согласуются с менеджером при заказе

Проведение контроля вакуумными рамками

Физические основы метода

Принцип пузырькового метода контроля основывается на локальном выявлении течей в изделиях по образованию пузырьков газа в среде индикатора. Метод используют для испытаний на герметичность резервуаров, особенно в местах соединений деталей конструкции, а также для обнаружения протечек в газовых или гидравлических системах, работающих под давлением.

Читать еще:  Какой дюбель лучше для бетона?

Контроль проводится с использованием пеноплёночного индикатора. Поверхность исследуемого объекта после предварительной очистки покрывается специальным пенообразующим составом. После этого к поверхности прикладывается вакуумная камера (рамка) внутри которой при помощи вакуумного насоса создаётся разрежение.

Во время работы насоса возникает разница давлений и контрольный газ (в нашем случае – воздух), проникая через полость микродефекта, механически воздействует на пеноплёночный индикатор и деформирует его, образуя пузырьки и пену. Дефект локализуется при визуальном осмотре через окно вакуумной камеры (рамки).

Эксплуатация вакуумно-пузырьковых рамок

При проведении работ по течеисканию, вакуумная рамка подключается к запорному клапану / ручке и накладывается на подлежащую контролю область исследуемого объекта. Поверхность объекта контроля предварительно смачивается пенообразующим составом.


Схема вакуум-камеры (рамки) для контроля герметичности
( 1 ) — резиновые уплотнения, ( 2 ) — корпус камеры, ( 3 ) — окно, ( 4 ) — кран, ( 5 ) — манометр,
( 6 ) — течь в сварном соединении, ( 7 ) — пенообразующий состав.

Вакуумная рамка размещается на поверхности контролируемого изделия с максимальным прилеганием к рабочей зоне. Перед началом работ необходимо убедиться в герметичности соединений между рамкой и поверхностью объекта контроля.

При открытии запорного клапана из полости, образованной поверхностью металла, уплотнителем и окном, откачивается воздух с максимальным разряжением до — 0,08 МПа, необходимым для обнаружения сквозной трещины (несплошности) с натеканием воздуха 10-5 м3/Па*сек, что соответствует IV классу герметичности согласно ПНАЭ Г-7-019-89.

Время визуального контроля состояния пенообразующего состава, нанесенного на поверхность сварного шва, не должно быть менее 2-х минут! Для более полного контакта рамок с неплоской поверхностью металла допускается продольный изгиб экрана не более 50 мм.

Ограничения

Вакуумные рамки не применяются для контроля необработанных электросварных швов, т.к. бугристая и неоднородная поверхность таких швов может препятствовать созданию герметичного соединения между рамкой и поверхностью объекта контроля.

Техническое обслуживание и хранение

Для очистки и мытья экрана и уплотнителя используется спирт или бензин БР-1 «Калоша» по ГОСТ 443-76 (либо его аналог – нефтяной растворитель Нефрас С2-80/120, ТУ 38.401-67-108-92), мягкие моющие средства или влажные салфетки. Контакт экрана и уплотнителя с органическими растворителями не допускается.

При длительном хранении избегайте деформации уплотнительного профиля и попадания прямых солнечных лучей. Температура хранения +5°С / +25°С.

Контроль течеисканием — контроль герметичности в вакуумных системах

Метод контроля течеисканием относится к виду неразрушающего контроля качества изделий проникающими веществами наряду с капиллярным методом. Течеискание является одним из распространенных и важных методов обнаружения сквозных дефектов в сосудах, замкнутых объемах, а также сварных швов.

Так как для многих изделий понятие герметичности является основным эксплуатационным требованием, проверка оборудования на отсутствие течей – важный и ответственный процесс. Особо высокие требования предъявляются к изделиям, работающим в вакууме и под высоким давлением.

В общем случае под течью понимают канал и участок в изделии, нарушающий герметичность конструкции. Герметичность – это свойство конструкции не пропускать частицы различных веществ, таких как газ, вода, пар. Нарушение герметичности возникает в результате повреждения конструкции вследствие различных причин. Определение геометрии течей является процессом трудоёмким, а во многих случаях нецелесообразным. Поэтому, применяя данный метод, о наличии течей судят по количеству вещества, протекающего в единицу времени.

Проверка изделия на герметичность позволяет судить о его качестве. По результатам контроля определяется место течи, что в дальнейшем позволяет проводить ремонтные работы. Для осуществления данного метода контроля разработано достаточно большое количество приборов.

Методы течеискания используют для выявления только сквозных дефектов в перегородках. В полость дефекта пробное вещество проникает либо под действием разности давлений, либо под действием капиллярных сил однако в последнем случае нанесение и индикацию пробных веществ выполняют по разные стороны перегородки. Метод требует значительных временных затрат на пропитку и проявление индикаторной жидкости, что приводит к снижению производительности контроля и сложности его автоматизации.

Вакуумный контроль течеискания

Один из методов неразрушающего контроля, позволяющий обнаруживать дефекты, выходящие на поверхность: трещины, раковины, непровары, поры и другие несплошности поверхности и околошовной зоны. Переносные вакуумные рамки, обеспечивающие вакуумный контроль течеисканием — пузырьковым способом — сварных соединений и основного металла изделий из стали, чугуна, цветных легких и специальных сплавов металлических конструкций инженерных сооружений, технических, технологических систем, выполненных всеми видами сварки.

Методы контроля герметичности разделяют на три группы, в зависимости от вида применяемых пробных веществ:

1) гидравлические (или жидкостные), когда в качестве индикаторного вещества используется жидкость (например, масло, вода, керосин);

2) газо гидравлические, когда в качестве пробного вещества используется газ (например, воздух), а жидкость играет роль вспомогательной среды при определении места утечки газа.

3) газовые, когда в качестве индикаторного вещества используется газ (аргон, гелий, воздух и др.).

К гидравлическим методам относят:

  • гидростатический;
  • пузырьковый;
  • капиллярный;

Гидростатический метод основан на регистрации параметров индикаторной жидкости, проникающей под давлением в сквозные дефекты изделия. При этом методе в изделие заливают жидкость и создают избыточное давление.

После определенной выдержки производится осмотр, герметичность определяется по наличию капель на контролируемой поверхности. Для лучшей индикации утечек на наружную поверхность контролируемого изделия предварительно наносят равномерный слой меловой обмазки и высушивают. На меловой обмазке пятна керосина или масла наиболее заметны. Этот метод относится к капиллярному. Оптимальное время выдержки – 10 – 15 мин.

При пузырьковом методе контролируемое изделие заполняют воз духом или азотом под избыточным давлением. На наружную поверхность наносят жидкое индикаторное вещество. При наличии течей газ, проникая наружу, образует в ней пузырьки. В качестве индикаторной жидкости применяют пенные эмульсии.

При газогидравлическом методе в проверяемом изделии создается избыточное давление и оно погружается в ванну с жидкостью. Определяя диметр пузырьков газа, время от их появления до отрыва, подсчитывают ориентировочно величину утечки газа. Для повышения точности метода время проверки доводят до 30 мин. Из газовых методов широко применяются манометрический, ионизационный и масс спектрометрический методы.

Манометрический метод основан на изменении величины давления в контролируемой емкости вследствие утечки газа через дефекты. Ионизационный метод основан на определении концентрации пробного газа в газе носителе с помощью ионизационного детектора. В качестве пробного газа используют гелий, водород, метан. При поиске течей в вакууме применяют ионизационный вакууметр. Сканируя им по поверхности изделия, определяют место и величину течи пробного газа из емкости.

Масс-спектрометрический метод является одним из наиболее чувствительных и универсальных при контроле герметичности конструкций. Он основан на регистрации ионов индикаторного газа (гелия), по павшего в вакуумную камеру течеискателя через сквозные дефекты объекта.

Неразрушающий контроль

ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов» в зависимости от физических явлений, положенных в основу неразрушающего контроля подразделяет его на виды:

— оптический;
— радиационный;
— акустический;
— магнитный;
— вихретоковый;
— электрический;
— радиоволновой;
— тепловой;
— проникающими веществами.

Вид контроля – это условная группировка методов неразрушающего контроля, объединенная общностью физических принципов, на которых они основаны. Методы каждого вида неразрушающего контроля классифицируются по определенным признакам:

— характеру взаимодействия физических полей с объектом;
— первичным информативным параметрам;
— способам получения первичной информации.

Методы контроля качества сварных соединений устанавливает ГОСТ 3242-79.

Применение метода или комплекса методов контроля для обнаружения дефектов сварных соединений при контроле конструкций при ее изготовлении, ремонте и реконструкции зависит от требований, предъявляемых к сварным соединениям в технической документации на конструкцию. Технология контроля сварных швов любым методом должна быть установлена в нормативно-технической документации на контроль.

Методы неразрушающего контроля качества сварных соединений

Визуальный контроль и измерения

Визуально-оптический контроль – это один из методов неразрушающего контроля оптического вида. Он основан на получении первичной информации об объекте при визуальном наблюдении или с помощью оптических приборов. Это органолептический контроль, т.е. воспринимаемый органами чувств (органами зрения) ГОСТ 23479-79 «Контроль неразрушающий. Методы оптического вида» устанавливает требования к методам контроля оптического вида. Визуальный метод контроля позволяет обнаруживать несплошности, отклонения размера и формы от заданных более 0,1 мм при использовании приборов с увеличением до 10х. Визуальный контроль, как правило, производится невооруженным глазом или с использованием увеличительных луп 2х до 7х. В сомнительных случаях и при техдиагностировании допускается увеличение до 20х.

Читать еще:  Как намагнитить магнит в домашних условиях

Визуальный контроль выполняется до проведения других методов контроля. Дефекты, обнаруженные при визуальном контроле, должны быть исправлены до проведения контроля другими методами.

Радиографический контроль

Радиационный вид неразрушающего контроля в соответствии с ГОСТ 18353-79 делится на методы: радиографический, радиоскопический, радиометрический. Радиографический метод контроля основан на преобразовании радиационного изображения контролируемого объекта в радиографический снимок. Требования к радиографическому контролю регламентированы ГОСТ 7512-82 «Контроль неразрушающий. Сварные соединения. Радиографический метод».

Схема просвечивания рентгеновскими лучами:
1 – рентгеновская трубка; 2 – кассета; 3 – фотопленка; 4 – экраны.

Метод ультразвуковой дефектоскопии

Данный метод относится к акустическому виду неразрушающего контроля (ГОСТ 3242-79), применяется при толщине металла шва не менее 4 мм. Он основан на использовании ультразвуковых волн, представляющих собой упругие колебания материальной среды с частотой выше 0,5-0,25 МГц (выше той, которую способны воспринимать слуховые органы человека). В этом методе контроля (ГОСТ 14782-86) используется способность ультразвуковых волн отражаться от границы раздела двух сред, обладающих разными акустическими свойствами. Когда при прохождении через сварной шов ультразвуковые волны встречают на своем пути дефекты (трещины, поры, шлаковые включения, расслоения и т. д.), они отражаются от границы раздела металл–дефект и могут быть зафиксированы при помощи специального ультразвукового дефектоскопа.

Магнитные методы контроля

Магнитные методы контроля основаны на принципе использования магнитного рассеяния, возникающего над дефектом при намагничивании контролируемого изделия. Например, если сварной шов не имеет дефектов, то магнитные силовые линии по сечению шва распределяются равномерно. При наличии дефекта в шве вследствие меньшей магнитной проницаемости дефекта магнитный силовой поток будет огибать дефект, создавая магнитные потоки рассеяния.


Прохождение магнитного силового потока по сварочному шву:
а – без дефекта; б – с дефектом

В соответствии с ГОСТ 18353-79 в зависимости от способа регистрации потоков рассеяния различают три магнитных метода контроля: магнитопорошковый, индукционный, магнитографический. Наиболее распространен магнитопорошковый метод или магнитопорошковая дефектоскопия (МПД).

Вихретоковый контроль

Методы вихретокового контроля основаны на регистрации изменения электромагнитного поля вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля. Вихревые токи – это замкнутые токи, индуктированные в проводящей среде изменяющимся магнитным полем. Если через катушку пропускать ток определенной частоты, то магнитное поле этой катушки меняет свой знак с той же частотой. Интенсивность и распределение вихревых токов в объекте зависят от его геометрических, электромагнитных параметров и от взаимного расположения изме­рительного вихретокового преобразователя (ВТП) и объекта. В качестве преобразователя используют обычно индуктивные катушки (одну или несколько). Синусоидальный или импульсный ток, действующий в катушках ВТП, создает электромагнитное поле, которое возбуждает вихревые токи в электропроводящем объекте. Электромагнитное поле вихревых токов воздействует на катушки преобразователя, наводя в них ЭДС или изменяя их полное сопротивление. Регистрируя напряжение на зажимах катушки (трансформаторный вихретоковый метод) или ее сопротивление (параметрический вихретоковый метод) получают информацию о свойствах объекта и о положении преобразователя относительно него.

Методы контроля проникающими веществами

Капиллярная дефектоскопия

Капиллярные методы НК предназначены для обнаружения открытых дефектов, выходящих на поверхность: трещин, пор, раковин, непроваров и других несплошностей поверхности изделий без их разрушения. Различают два основные метода капиллярной дефектоскопии: цветной и люминесцентный. Этими методами контролируют детали различной формы из аустенитных, титановых, алюминиевых, медных и других немагнитных материалов. Эти методы позволяют выявлять:

— трещины сварочные, термические, усталостные;
— пористость, непровары и другие дефекты типа открытых несплошностей различной локализации и протяженности, невидимые невооруженным глазом и лежащие в пределах чувствительности и надежности дефектоскопических средств.

Течеискание

Пузырьковый метод с использованием вакуумных камер

Вакуумный контроль сварных швов применяют в тех случаях, когда применение других способов почему-либо исключено. В частности, этот метод широко применяется при контроле сварных днищ резервуаров, газгольдеров, цистерн, гидроизоляционных ящиков. Он позволяет обнаружить отдельные поры диаметром до 0,004 0,005 мм, а производительность при его использовании достигает 40 – 60 м сварных швов в час. Вакуум создают при помощи переносной вакуум-камеры, которую устанавливают на наиболее доступной стороне проверяемого участка шва, предварительно обильно смоченной мыльным раствором. В результате разности давлений по обеим сторонам шва воздух будет проникать в камеру при наличии неплотностей в сварном соединении. В местах трещин, непроваров, газовых пор образуются стойкие мыльные пузырьки, хорошо видимые через прозрачный верх камеры. Отметив расположение дефектов мелом, цветным карандашом или краской, впускают атмосферный воздух, камеру снимают и сделанные отметки переносят на сварной шов.

Контроль швов газоэлектрическими течеискателями

В настоящее время применяют два вида газоэлектрических течеискателей: гелиевые и галоидные. Чувствительность газоэлектрических течеискателей к выявлению неплотностей в швах очень высока, но ввиду сложности конструкции и значительной стоимости изготовления их применяют только для контроля особо ответственных сварных конструкций.

Принцип работы гелиевого течеискателя основан на высокой способности гелия при определенном вакууме проходить сквозь неплотности сварных швов. При контроле сварные швы снаружи испытуемой емкости обдувают из резинового шланга тонкой струёй гелия, находящегося под небольшим давлением в специальном сосуде — газометре. При наличии неплотностей в швах гелий или его смесь с воздухом попадает из емкости в масс-спектрометрическую камеру, в которой поддерживается высокий вакуум. При попадании гелия в масс-спектрометрическую камеру в ней возникает ионный ток, который подается на индикаторы — миллиамперметр и сирену. Величина отклонения стрелки миллиамперметра позволяет судить о размерах дефекта.

Испытания плотности сварных швов

Испытаниям на плотность подвергают емкости для горючего, масла, воды, трубопроводы, газгольдеры, паровые котлы и др. Существуют несколько методов контроля плотности сварных швов: гидравлическое испытание, испытание водой без давления или наливом, испытание струей воды или поливом, пневматическое испытание, испытание аммиаком, испытание керосином.

Способы контроля качества сварочных швов

Качество сварочных работ и сварных соединений сильно влияет на прочность конструкций или герметичность резервуаров. Несоответствие сварных швов заданным характеристикам приводит к разрушениям конструкций с катастрофическими последствиями, то же относится и к системам, работающим с сосудами и трубопроводами под давлением.

Поэтому после сварочных работ в обязательном порядке готовое изделие подвергают испытаниям и контролю на предмет обнаружения дефектов в сварных соединениях.

Все процедуры по контролю над качеством сварки определены ГОСТом или руководящими документами. В них также указаны допустимые нормы погрешностей. После испытаний составляется акт и протоколы с результатами измерений.

Методы проверки

Контроль качества сварочных работ, выполняемых на производстве, может быть разрушающим и неразрушающим. Первые методы используются выборочно. Проверяется одно или несколько изделий из большой партии, или часть металлоизделия в строительной конструкции.

Оно проверяется по различным параметрам определенным протоколом испытаний. Но главным образом используют специальные приборы или материалы позволяющие проверить качество сварных соединений без разрушения конструкции.

Основными способами неразрушающего контроля качества сварки являются:

  • визуальный;
  • капиллярный;
  • проверка на проницаемость;
  • радиационный;
  • магнитный;
  • ультразвуковой.

Имеются и другие способы и виды контроля качества сварки, но в силу своей специфики они не получили распространения.

Проверка состояния сварных швов не является одноразовым актом, это результирующий этап, который показывает, как работает система контроля качества на предприятии.

Для минимизации дефектов сварочных соединений проводят операционный контроль работ. Регулярно проводится аттестация, на которой комиссия сначала дает разрешение на сварку контрольного соединения. При прохождении сварщиками этого испытания проверяются теоретические знания.

Перед началом работ проверяется квалификация сварщика, у него должно быть удостоверение на право сваривания определенных марок стали и наряд-допуск.

Инженер по сварке и контролер из службы техконтроля проверяют качество сборки, состояние кромок, работоспособность сварочного аппарата, контролирует температуру прогрева, если это предусмотрено нормативно-технической документацией.

Читать еще:  Отливка пластика в домашних условиях

Контроль качества сварочных материалов осуществляется с момента поступления их на предприятие и до использования на сварочном посту. Проверку электродов проводят на каждом этапе хранения и использования, при необходимости их прокаливают.

При непосредственном проведении работ проверяют, какой режим сварки используется, дуговая сварка, аргонодуговая или иной вид сварки. Проверяют порядок наложения швов, размеры слоев и всего соединения.

Если предусмотрены специальные требования в проектно-технической документации, то и их реализацию. По завершении сваривания проверяет наличие клейма сварщика.

Внешний осмотр

Любая проверка качества сварных швов начинается с визуального контроля. Осматривают все 100% сварных соединений. Сначала проверяют геометрию и форму шва.

Визуальный контроль помогает выявить, наряду с наружными, часть внутренних изъянов. Так, переменные по габаритам валики швов и неравномерные складки говорят о непроварах, возникающих из-за частых обрывов электрической дуги.

Перед началом работ со сварных соединений удаляют шлак, окалины прочие загрязнения. Чтобы лучше можно было разглядеть дефекты, швы обрабатывают азотной кислотой (10%). Это придает матовость шву, что облегчает поиск изъянов.

После обработки кислотой необходимо провести тщательную протирку спиртом, чтобы предупредить ее вредное влияние на сплав.

Для повышения качества проверки можно использовать фонарь и оптическую лупу. Для контроля геометрических размеров применяют штангенциркуль и шаблоны.

Капиллярный метод

Данный способ контроля использует свойство жидкости затягиваться в очень мелкие капилляры. Быстрота и степень проникновения внутрь материала связана с его смачиваемостью и диаметром капилляров. Больше смачивается сплав и тоньше капилляры – глубже проникает жидкость.

Капиллярный способ контроля качества шва позволяет иметь дело не только с любыми металлами, но и с керамикой, пластмассой, стеклом. Главное его применение связано с проявлением внешних изъянов, которые невозможно или трудно определить невооруженным глазом. Иногда, используя, к примеру, керосин, можно обнаружить сквозные дефекты.

Способ очень простой, работает со времен возникновения потребности проверки сварочных швов. Для него даже разработан специальный ГОСТ 18442-80.

В капиллярном методе контроля качества сварки используют пенетранты – вещества, имеющие малое поверхностное натяжение и сильный цветовой контраст.

Проникая в дефектные зоны, и подсвечивая их, пенетранты визуализируют изъяны сварки. Их делают на основе воды, керосина, масла для трансформаторов и прочих жидкостей.

Наиболее чувствительные пенетранты могут проявить дефекты диаметром от 0,1 микрона. Капиллярный метод контроля качества сварки эффективен для дефектов до 0,5 мм шириной. При больших диаметрах пор или трещин он не работает.

Способ с применением пенетрантов заключается в очистке поверхности, нанесении контрольной жидкости и проявлении изъянов. Очень эффективен способ контроля сварных соединений с помощью керосина.

Несмотря на разнообразные приборы контроля качества сварки, проверку этим способом используют до сих пор. С одной стороны наносят раствор мела, дают время для сушки, затем с другой стороны шов смазывается керосином. Бракованные места проявляются через несколько часов в виде темных пятен.

Проверка сварных соединений на проницаемость

В случае применения сварки при изготовлении резервуаров требуется контроль герметичности. Для этого проводят испытания на непроницаемость соединений. Контроль качества проходит с применением газов или жидкостей.

Суть метода основана на создании большой разности давлений между наружной и внутренней областью емкости. При сквозных изъянах в сварном шве жидкость или газ будут переходить из области с высоким давлением в область с низким давлением.

В зависимости от используемого вещества и способа получения избыточного давления контроль проницаемости осуществляют пневматикой, гидравликой или вакуумом.

Пневматический способ

Применение пневматического метода контроля качества сварки требует накачивания резервуара каким-либо газом до давления величиной 150% от номинального.

Затем все сварные швы смачивают мыльным раствором. В местах протечек образуются пузыри, что очень легко фиксируется. Для лучшей визуализации используют добавку аммиака, а шов покрывают бинтом пропитанным фенолфталеином. В местах протечек появляются красные пятна.

Если нет возможности накачать емкость, то применяют способ обдува. С одной стороны шов обдувается под давлением не менее 2,5 атмосферы, а с другой обмазывается мыльным раствором. Если имеется брак, то он выявится в виде пузырьков.

Гидравлический способ

При гидравлическом способе контроля качества сварки проверяемая емкость заполняется водой или маслом. В сосуде создается избыточное давление, которое больше номинального в полтора раза.

Затем в течение определенного времени, обычно 10 минут, область вокруг шва обстукивают молотком со скругленным бойком. При наличии сквозного дефекта сварки появится течь. Если избыточное давление невелико, то время выдержки резервуара увеличивают до нескольких часов.

Магнитная дефектоскопия

Явление электромагнетизма используется в магнитных дефектоскопах. Каждый металл имеет свою степень магнитной проницаемости. При прохождении через неоднородные материалы магнитное поле искажается, что говорит о присутствии инородных элементов внутри структуры.

Это используется в приборе для контроля качества сварки. Он вырабатывает магнитное поле, которое проникает в исследуемый металл. Неоднородности фиксируются магнитопорошковым или магнитографическим способом.

В первом случае на сварной шов наносят ферромагнитный порошок. Там где происходит скопление порошка вероятнее всего непровар, нет сплошного соединения. Порошок может быть сухим или влажным, с примесью масла или керосина.

Во втором случае на шов накладывают ферромагнитную ленту. Затем ее пропускают через прибор, где анализируют все аномалии, зафиксированные на ленте, и определяют дефекты сварки.

Магнитный способ контроля качества имеет ограничения, связанные с самим принципом действия прибора. Он может проверять качество сварных соединений только ферромагнетиков, к которым некоторые стали и цветные металлы не относятся. Соответственно, такой способ контроля имеет ограниченное применение.

Ультразвуковая дефектоскопия

Для контроля качества сварки применяют ультразвук. Принцип действия аппарата основан на отражении ультразвуковых волн от границы соединения двух сред с различными акустическими свойствами.

Датчик и излучатель плотно прикладывают к исследуемому материалу, после чего устройством вырабатывается ультразвук. Он проходит через весь металл и отражается от задней стенки, возвращаясь, попадает на приемный сенсор, который в свою очередь преобразует ультразвук в электрические колебания. Прибор представляет полученный сигнал в виде изображения отраженных волн.

Если внутри металла присутствуют какие-нибудь изъяны, датчик зафиксирует искажение отраженной волны. Опытным путем установлено, что различные дефекты сварки по-разному себя проявляют на ультразвуковом дефектоскопе. Это позволило провести их классификацию. При соответствующем обучении специалист может точно определить вид брака в шве.

Способ контроля качества сварных соединений ультразвуком широко распространился благодаря простоте и удобству применения, относительно недорогому оборудованию, безопасности использования по сравнению с радиационным методом.

Минусом способа является трудность расшифровки графического изображения. Контроль качества соединения может сделать только сертифицированный специалист. Его проблематично использовать для контроля крупнозернистых металлов типа чугуна.

Радиационный метод

Для контроля качества сварки используют радиационные методы и устройства. По сути это тот же рентгеновский аппарат, используемый в больницах, или прибор с источником гамма-излучения, приспособленный для облучения сварных соединений.

Он основан на способности этих лучей, проникать через любые материалы. Интенсивность проникновения зависит от вида исследуемых веществ. Благодаря этому на фотопленке, стоящей за исследуемым изделием, остается изображение, характеризующее состояние данного материала.

Все дефекты сварки в виде неоднородностей выявляются на пленке. Метод контроля очень точный, но дорогой и вредный для людей, требует подготовительных работ по установке защитных экранов и проведения организационных мероприятий.

Оформление документации

Для проведения сварки предусматривается специальный журнал. Он является первичным документом, оформляющийся по требованиям СНиП. Проектная организация составляет перечень узлов в металлоконструкции, которые необходимо сдать заказчику с оформлением сварочных документов.

Помимо журнала, сварочные работы сопровождает схема стыков, прилагаются сертификаты на расходные материалы (электроды, флюс или присадочную проволоку) и акты по контролю качества снаружи изделия.

Если проводились ультразвуковые или иные специфические исследования, то результаты и заключения по ним также прилагаются.

Все это позволяет говорить о качестве сварке и надежности конструкции. Только после сдачи в полном объеме сварочной документации производятся дальнейшие процедуры по принятию металлоконструкций объекта.

Ссылка на основную публикацию
Adblock
detector