Производство стали в кислородных конвертерах

Производство стали в кислородных конвертерах

Сущность процесса

Производство стали

Основными материалами для производства стали являются передельный чугун и стальной лом. Механические свойства стали гораздо выше, чем у чугуна, что объясняется пониженным содержанием углерода, а также примесей в стали по сравнению с чугуном (табл. 3.1).

Состав передельного чугуна и низкоуглеродистой стали.

Сущностью любого передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы.

Кислородный конвертер (рис. 3.2) представляет собой агрегат грушевидной формы высотой до 15 м, кожух которого изготовлен из листовой стали толщиной до 110 мм. Внутри конвертер футерован огнеупорным кирпичом. В процессе работы конвертер 2 может поворачиваться на цапфах 1 с помощью поворотного устройства 3 вокруг горизонтальной оси для завалки скрапа, заливки чугуна, разгрузки стали и шлака.

Шихтовыми материалами для кислородно-конвертерного процесса являются жидкий передельный чугун, скрап и флюсы. В состав флюсов входит известняк, железная руда, боксит Al2O3 и плавиковый шпат СаF3, который применяют для разжижения шлака.

В кислородном конвертере всегда ведут основной процесс выплавки стали, повышенную щелочность создают с помощью известняка для удаления фосфора и серы.

Перед плавкой в наклоненный конвертер через горловину загружают скрап и заливают чугун с температурой 1250–1350 °С. Шихта должна занимать 1/5 объема конвертера. После этого конвертер поворачивают в вертикальное положение и внутрь его вводят водоохлаждаемую фурму 5, через которую подают кислород под высоким давлением. Фурма не доходит до уровня металла на 1,2–2 м. Одновременно с началом продувки в конвертер загружают флюсы.

Рис. 3.2. Схема устройства кислородного конвертера и стадии выплавки стали:

I – завалка лома; II – заливка чугуна; III – загрузка флюса; IV – продувка;

V – выпуск стали; VI – слив чугуна; 1 − цапфы; 2 − конвертер; 3 − поворотное устройство; 4 − отверстие для выпуска стали; 5 − фурма

Для снижения содержания в чугуне углерода и примесей осуществляют их окисление. Процессы окисления сопровождаются выделением большого количества тепла, что необходимо для расплавления шихты и нагрева ванны жидкого металла. В этом состоит первый этап плавки.

В первую очередь под действием кислорода начинается интенсивное окисление железа в соответствии с законом действующих масс, так как в чугуне в большом количестве содержится железо и оно взаимодействует с кислородом: Fe + 1/2 О2 = FeО + 263 кДж

Образовавшийся оксид железа, при высоких температурах процесса, более активно, чем чистый кислород, взаимодействует с примесями чугуна.

На 4–6-й минутах плавки окисляется кремний, восстанавливается железо и выделяется большое количество тепла. С окисления кремния начинается процесс шлакообразования. На 8–10-й минутах плавки начинает окисляться марганец и в виде оксида также удаляется в шлак. Фосфор начинает взаимодействовать с оксидом железа в начальный момент продувки (с 5-й минуты):

2P + 5FeO ↔ 5Fe + P2O5 + 225 кДж

Повышенное содержание оксида железа способствует образованию Р2О5. Это соединение неустойчивое, и реакция может идти в обе стороны, но присутствующий в печи оксид кальция уже при невысоких температурах связывает Р2О5, переводя его в шлак:

Хуже всего при кислородно-конвертерном процессе удаляется сера, присутствующая в чугуне в виде сульфида железа FeS, который начинает взаимодействовать с оксидом кальция даже при низких температурах:

FeS + СаО = FeО + СаS

Но в кислородном конвертере из-за повышенного содержания FeО сера практически не связывается кальцием, так как этот процесс сопровождается образованием FeО, который уже в избытке.

Второй этап выплавки стали – «кипение» металлической ванны начинается при достижении температуры 1450 °С. Это позволяет интенсивно протекать реакции окисления углерода, сопровождающейся поглощением теплоты:

FeО + С = СО + Fe – 154 кДж

Пузырьки окиси углерода выделяются из жидкого металла, вызывая бурное кипение ванны. Оно способствует выравниванию температуры по объему конвертера и частичному удалению в шлак неметаллических включений, прилипающих к пузырькам углерода. При достижении заданного содержания углерода подачу кислорода отключают, фурму поднимают, конвертер наклоняют и сталь через летку выливают в ковш.

Третий этап выплавки стали – раскисление в кислородном конвертере не проводится, оно осуществляется в ковше осаждающим методом.

Раскисление заключается в восстановлении оксида железа FeО, растворенного в жидком металле. Кислород, выполнивший свою функцию при удалении примесей из металла, сам является вредной примесью, и его содержание необходимо снизить.

В ковш добавляют ферромарганец, ферросилиций и алюминий. Они обладают бóльшим сродством к кислороду, чем сталь. Железо восстанавливается, а образующиеся оксиды MnO, SiO2, Al2O3, обладающие меньшей плотностью, уходят в шлак:

FeО + Mn = Fe + MnO + Q

2FeО + Si = 2Fe + SiO2 + Q

3FeО + 2Al = 3Fe + Al2O3 + Q

В кислородных конвертерах выплавляют конструкционные стали с различным содержанием углерода – кипящие и спокойные. Этим способом трудно получать стали, содержащие высокое количество легкоокисляющихся легирующих элементов, поэтому кислородно-конвертерным способом можно выплавить только низколегированную сталь. Легирующие элементы вводятся в ковш в расплавленном состоянии или в виде твердых ферросплавов.

Кислородно-конвертерный процесс отличается высокой производительностью: выплавка стали в конвертерах вместимостью 50–300 т идет 25–50 мин.

93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Производство стали в кислородных конвертерах.

Эта технология реализуется на металлургических предприятиях с доменным производством, так как основная масса шихты — жидкий чугун. Она принципиально отличается от мартеновского метода и плавки в электропечах отсутствием внешнего нагрева — источником тепловой энергии для выплавки стали являются химические экзотермические (с выделением теплоты) реакции окисления элементов, входящих в состав чугуна. Этот способ производства стали продувкой воздуха через расплавленный чугун был запатентован в 1856 г. Г. Бессемером.

В настоящее время применяют более производительную технологию — кислородно-конвертерную плавку — продувку жидкого чугуна осуществляют не воздухом, а техническим кислородом.

Емкость существующих конвертеров составляет 10. 400 т. Кислородный конвертер (рис. 4.2), может поворачиваться, наклоняться, что необходимо для заливки исходного чугуна, взятия проб, выпуска стали и т. д. Через верхнее

Рис. 4.2. Схема кислородного конвертера: а — заливка чугуна; б — продувка кислородом;

1 — конвертер; 2 — фурма для подачи кислорода; 3 — летка для выпуска стали

отверстие осуществляется загрузка шихтой, выпуск шлака. Кислород под давлением 1___1,5 МПа подают сверху через водоохлаждаемую фурму 2. Сливают

полученную сталь через летку 3.

В конвертер сначала загружают скрап, затем заливают чугун (

70 % по массе) и засыпают шлакообразующие компоненты — известь и бокситы. В состав шихты может входить также железная руда и окалина.

Кислород, подаваемый в конвертер, окисляет преимущественно железо, поскольку это основной элемент, входящий в состав шихты (

90 %). Эта реакция экзотермическая, идущая с выделением теплоты (Fe + 1/2 02 —> FeO). С начала продувки в конвертере образуется две несмешиваемые жидкости — металл (плотность

7,8 г/см 3 ) и шлак (плотность

2,5 г/см 3 ). Примеси и избыток углерода удаляются в результате реакций, происходящих между оксидами железа или кальция (входящего в известь), с одной стороны, и примесями — с другой.

Кремний, марганец и фосфор удаляются в результате следующих реакций обмена с оксидом железа:

При этом оксиды кремния и марганца переходят в шлак, а оксид фосфора растворяется в металле. Его удаление так же, как и удаление серы с их переходом в шлак, достигается в результате реакций обмена с оксидом кальция: Р25 + 4СаО —?> (Са0425 и FeS + СаО —?> FeO + CaS. Углерод выгорает по реакции: FeO + С —?> Fe + СО.

Содержание углерода в стали регулируется временем продувки — чем оно меньше, тем больше углерода остается в стали. Время продувки мало влияет на содержание примесей, так как они активно окисляются в начале продувки, тогда как заметное снижение углерода происходит позже (рис. 4.3).

Читать еще:  Как лить пластик в домашних условиях

Завершающей операцией выплавки стали является раскисление (удаление кислорода). Кислород, растворенный в железе, снижает механические свойства сталей (прочность, пластичность и вязкость).

Стали в зависимости от степени раскисления подразделяют на кипящую, спокойную и полуспокойную:

кипящая сталь, называемая так из-за выделяющихся пузырей СО в результате непрекращающейся реакции С + О —> СО, получается при раскислении только ферромарганцем;

Рис. 4.3. Влияние продолжительности продувки кислородом на содержание примесей и углерода в стали

  • полуспокойная сталь образуется при раскислении ферромарганцем и небольшим количеством ферросилиция (или алюминия);
  • спокойная сталь образуется при последовательном раскислении ферромарганцем, ферросилицием и алюминием.

Кипящая, наименее раскисленная сталь, обладает пониженными свойствами из-за наличия газовых пузырей, остающихся в слитке. Это самая дешевая сталь. Лучшим качеством и соответственно более высокой ценой обладает хорошо раскисленная спокойная сталь (без газовых пузырей).

Преимущества кислородно-конвертерной технологии перед мартеновским и электросталеплавильным процессами — более высокая производительность, простота оборудования; меньшая стоимость самого процесса (не требуется внешний нагрев, не расходуется топливо).

К недостаткам следует отнести необходимость сооружения сложных и дорогостоящих пылеочистительных установок, что вызвано большим пылеобра- зованием, связанным с активным окислением и испарением железа, а также большой угар легирующих элементов — хрома, марганца и других элементов. Поэтому в конвертере выплавляют в основном углеродистые и низколегированные стали.

Кислородный конвертер

Для производства стали применяют три хорошо отработанных технологических процесса: мартеновский, кислородно-конвертерный, электроплавильный. Согласно статистике наибольшее количество стали в мире выплавляют, используя кислородный конвертер. На него приходится более 70% всей выплавляемой стали.

Основы этого метода были разработаны в начале тридцатых годов двадцатого века. Применять его приступили на австрийских заводах, расположенных в двух городах Линце и Донавице только в пятидесятые годы двадцатого века. В зарубежной технической литературе по металлургии этот способ получения стали именуется буквами ЛД. Это название возникло из первых букв австрийских городов. У наших металлургов он именуется как кислородно-конвертерный.

Разновидности кислородно-конвертерного способа

В кислородных конвертерах технология выплавки происходит по одному из двух хорошо известных способов. Они носят имя своих создателей: томасовский и бессемеровский. Однако современные технологии шагнули далеко вперёд. Так содержание азота в томасовской и бессемеровской стали выше в три раза, чем в конвертерной или мартеновской.

Разница между ними заключается в реализации технологических решений и применяемого огнеупорного материала. В томасовском процессе достаточно сложно производить контроль над протеканием периодов плавки. Бессемеровский процесс позволяет производить продувку воздухом через дно самого конвертера.

По способу организации продувки кислородно-конвертерный процесс бывает: с верхней, нижней или донной, комбинированной продувкой.

Первый способ обеспечивает наилучшие условия следующих технологических процессов: подачи в конвертер кислорода для продувки, более эффективный вывод лишних газовых скоплений, удобную заливку жидкого чугуна, дополнительную загрузку металлического лома и других дополнительных материалов.

Конвертеры с нижней продувкой всегда сделаны с меньшим объемом, по сравнению с конвертерами, обладающими верхней продувкой. Для реализации продувки через дно в нижней части конвертера монтируют от семи до двадцати специальных устройств, называемых фурмами. Их количество зависит от объёма конвертера. Монтируют эти устройства в той части дна, которая поднимается над уровнем расплавленного металла в момент наклона конвертера. После освобождения от содержимого осуществляется этап продувки. Существенно повышается скорость движения молекул углерода к поверхности. Это снижает общее содержание химического элемента в расплаве. Таким образом, появляется возможность получать сталь, в которой процент содержания оставшегося углерода очень маленький.

Кроме углерода, удаётся получить лучшее удаление серы. Осуществляя продувку со стороны дна, удаётся повысить на 2% количество получаемого металла.

Последний способ позволяет объединить некоторые достоинства обоих методов и в то же время устранить некоторые имеющиеся недостатки. Продувка мощным потоком кислорода производиться сверху вниз. Снизу вверх производят продувку инертным газом, например аргоном. Иногда для снижения общей стоимости вместо инертных газов применяют азот. Применение комбинированной продувки позволяет добиться следующих положительных показателей:

  • увеличить объём выплавляемого металла;
  • процент добавляемого металлического лома может быть повышен;
  • добиться существенного снижения требуемых ферросплавов;
  • уменьшить требуемое количество кислорода для продувки;
  • снизить содержания различных газовых примесей, что позволяет повысить качество стали.

Технология кислородно-конвертерного способа

Устройство кислородного конвертера достаточно простое. По внешней форме конвертер выглядит как большой сосуд. Сверху он заканчивается сужающейся горловиной. Такая форма верхней части позволяет обеспечивать благоприятные условия для организации верхней продувочной системы. Вся загрузка компонентов в конвертер осуществляется сверху. Принцип работы кислородного конвертера заключается в следующем: в него заливают расплавленный чугун (он служит топливом для кислородного конвертера), засыпают металлический лом, загружают дополнительные материалы. В центральной части металлического корпуса конвертера располагается механизм поворота. С его помощью происходит наклон конвертера для слива готовой стали. В конвертерах, у которых объём превышает 200 тонн, применяют мощный двухсторонний привод. Для этого используют четыре мощных электрических двигателя, по два с каждой стороны.

При выборе размера верхней горловины учитывают, что целесообразно производить загрузку исходного материала, например стального лома не по частям, а сразу весь объём. Это позволяет сократить общее время, которое требуется на весь технологический процесс. Однако при увеличении размера горловины конвектора начинают увеличиваться общие тепловые потери. Происходит повышение содержания азота. Это происходит за счёт того, что через широкую горловину происходит самопроизвольное подсасывание дополнительного кислорода из окружающего воздуха. Вместе с кислородом попадает и азот. Этот дополнительный азот растворяется в металле и приводит к снижению качества.

Во многих странах наиболее распространёнными являются конвертеры с объёмом от 20 тонн до 450 тонн. Продолжительность конвертерного процесса выплавки стали не превышает 50 минут.

Сохранение надёжности протекания химических реакций при конвертерном процессе выплавки стали происходит благодаря поддержанию температуры более 1400°C. Для обеспечения этих условий металлический корпус конвертера внутри выкладывается огнеупорным материалом (обычно это специальный шамотный или тугоплавкий кирпич). На первом этапе производят загрузку кислородного конвертера. После этого, приступают к подаче кислорода. Требуемое количество подаваемого воздуха для обеспечения одной плавки составляет 350 кубических метров.

Кислород с большой скоростью вступает в химическую реакцию с расплавленным чугуном. Это позволяет удалить избыточный углерод. Присутствующие в металле серу и фосфор одновременно превращают в шлак. Такая технологическая цепочка позволяет остановить плавку в тот момент, когда уровень содержания углерода достигнет заданных технических условий. Это позволяет получать довольно большую номенклатуру углеродистых сталей и добиваться низкого содержания серы, фосфора и других примесей.

Контроль происходящих процессов и качество металла, осуществляют методом периодического отбора проб. Они позволяют определить степень оставшегося в расплаве газообразного углерода. Когда процент содержания углерода достигнет заданного, процесс продувки кислородом останавливают. По завершению технологической цепочки, сталь выливают в специальный ковш. Оставшийся шлак удаляют через специальный слив в конвертере.

Особое внимание уделяется контролю количества и скорости подачи кислорода. Процент содержания кислорода регулируют введением в конвертер охладителей. Функции охладителей могут выполнять: металлолом, железная руда, известняк.

Схема кислородного конвертера

Всё равно в готовой стали всегда сохраняется определённый процент кислорода. Он вступает в реакцию окисления с железом. Таким образом образуется окись железа. Чтобы снизить содержание этой окиси (провести операцию восстановления железа), в ковш добавляют так называемые раскислители. Если процесс так называемого раскисления произошел технологически правильно, в результате остывания отсутствует процесс выделения газов. Такую сталь металлурги называют спокойной. Для получения такой стали, в качестве раскислителей, в расплав добавляют сначала добавки на основе ферромарганца. На конечном этапе добавляют ферросилиций. В конце плавки — обыкновенный алюминий.

Вся технологическая цепочка производства стали подразделяется на следующие этапы:

  • окисление присутствующих добавок;
  • последовательные химические реакции (сначала окисление кремния; затем марганца, на завершающем этапе углерода);
  • дефосфорация;
  • десульфурация;
  • шлаковое образование;
  • процесс общего раскисления.
Читать еще:  Какой нужен компрессор для покраски автомобиля?

Если весь кислород не был удалён, продолжается образование окиси железа. Кроме этого, при остывании продолжается химическая реакция взаимодействия углерода и железа. Она приводит к выделению окись углерода. Его интенсивное образование и последующее выделение из расплава хорошо видно визуально. Процесс напоминает закипания воды в чайнике. Подобная сталь на языке профессионалов называется «кипящей». Для устранения этого эффекта в расплав добавляют ферромарганец.

Присутствие в жидком металле растворенных газов, которые не успевают выйти, приводит к образованию пустот. Они серьёзно снижают качество всего полученного металла. Чтобы не допустить таких образований, на этапе плавки, производят специальную дегазацию. Чтобы добиться наилучшего эффекта, эту операцию проводят в специальных вакуумных камерах. Таким образом удаётся существенно повысить плотность и улучшить физико-механические свойства полученной партии металла.

Достоинства и недостатки кислородно-конвертерного способа

К основным достоинствам способа относятся:

  • по сравнению с другими процессами выплавки у него более высокая производительность;
  • конструктивная схема самого кислородного конвертера достаточно проста (обыкновенный металлический резервуар, то есть корпус, внутри которого находится огнеупорный материал);
  • низкая стоимость расходов на огнеупоры;
  • невысокая себестоимость получаемой стали;
  • низкие капитальные затраты на строительство, даже с учётом добавления стоимости на строительство кислородных станций.

Опыт эксплуатации конвертеров показал, что экономическая эффективность превышает мартеновский способ на 14%, а электроплавильный на 25%.

К наиболее явно выраженным недостаткам относятся:

  • необходимость загрузки в конвертер только жидкого чугуна. Добавление и последующая переработка металлического вторсырья возможна только в небольшом количестве (не более 10%);
  • на этапе технологической продувки вместе с углеродом выгорает достаточно большое количество полезного железа. Технологические потери могут достигать 15%;
  • возникают сложности в организации системы контроля и регулирования конвертерного процесса выплавки стали. Это связано с высокой скорость протекания химических процессов;
  • недостаточный контроль не позволяет получать сталь точно заданных технических характеристик.

Область применения конвертерных видов стали

Имеющиеся недостатки несколько ограничивают область применения подобной стали. Из неё производят такие деталей, к которым не предъявляют повышенные технические требования. В кислородных конвертерах получают продукцию трёх видов: углеродистую, легированную и низколегированную сталь. Эти марки используются для изготовления проволоки (катанки), труб небольшого диаметра, отдельных видов рельс.

Специальные изделия активно применяются в строительстве. Практически вся так называемая автоматная сталь изготавливается по конвертерной технологии. Из неё производят большое количество метизной продукции: болты, гайки, шурупы, саморезы, скобы и так далее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Производство стали в конвертерах

Кислородно-конвертерный процесс представляет собой один из видов передела жидкого чугуна в сталь без затраты топлива путем продувки чугуна в конвертере технически чистым кислородом, подаваемым через фурму, которая вводится в металл сверху.

Впервые кислородно-конвертерный процесс в промышленном масштабе был осуществлен в Австрии в 1952 — 1953 гг. на заводах в городах Линце и Донавице (за рубежом этот процесс получил название ЛД по первым буквам городов, в нашей стране — кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т, продолжительность плавки в которых составляет 30 — 50 мин.

Процесс занимает главенствующую роль среди существующих способов массового производства стали. Такой успех кислородно-конвертерного способа заключается в возможности переработки чугуна практически любого состава, использованием металлолома от 10 до 30 %, возможность выплавки широкого сортамента сталей, включая легированные, высокой производительностью, малыми затратами на строительство, большой гибкостью и качеством продукции.

Кислородно-конвертерный процесс с верхней продувкой

Конвертер имеет грушевидную форму с концентрической горловиной. Это обеспечивает лучшие условия для ввода в полость конвертера кислородной фурмы, отвода газов, заливки чугуна и завалки лома и шлакообразующих материалов. Кожух конвертера выполняют сварным из стальных листов толщиной от 20 до 100 мм. В центральной части конвертера крепят цапфы, соединяющиеся с устройством для наклона. Механизм поворота конвертера состоит из системы передач, связывающих цапфы с приводом. Конвертер может поворачиваться вокруг горизонтально оси на 360о со скоростью от 0,01 до 2 об/мин. Для больше грузных конвертеров емкостью от 200 т применяют двухсторонний привод, например, четыре двигателя по два на каждую цапфу

Рисунок 2 Конвертер емкостью 300 т с двухсторонним приводом механизма поворота

В шлемной части конвертера имеется летка для выпуска стали. Выпуск стали через летку исключает возможность попадания шлака в металл. Летка закрывается огнеупорной глиной, замешанной на воде.

Рисунок 3 Технологическая схема производства стали в кислородном конвертере

Ход процесса. Процесс производства стали в кислородном конвертере состоит из следующих основных периодов (рис 3); загрузки металлолома, заливки чугуна, продувки кислородом, загрузки шлакообразующих, слива стали и шлака.

Загрузка конвертера начинается с завалки стального лома. Лом загружают в наклоненный конвертер через горловину при помощи завалочных машин лоткового типа. Затем с помощью заливочных кранов заливают жидкий чугун, конвертер устанавливают в вертикальное положение, вводят фурму и включают подачу кислорода с чистотой не менее 99,5 % О2. Одновременно с началом продувки загружают первую порцию шлакообразующих и железной руды (40 — 60 % от общего количества). Остальную часть сыпучих материалов подают в конвертер в процессе продувки одной или несколькими порциями, чаще всего 5 — 7 минут после начала продувки.

На процесс рафинирования значительное влияние оказывают положение фурмы (расстояние от конца фурмы до поверхности ванны) и давление подаваемого кислорода. Обычно высота фурмы поддерживается в пределах 1,0 — 3,0 м, давление кислорода 0,9 — 1,4 МПа. Правильно организованный режим продувки обеспечивает хорошую циркуляцию металла и его перемешивание со шлаком. Последнее в свою очередь способствует повышению скорости окисления содержащихся в чугуне C, Si, Mn, P.

Важным в технологии кислородно-конвертерного процесса является шлакообразование. Шлакообразование в значительной мере определяет ход удаления фосфора, серы и других примесей, влияет на качество выплавляемой стали, выход годного и качество футеровки. Основная цель этой стадии плавки заключается в быстром формировании шлака с необходимыми свойствами (основностью, жидкоподвижностью и т. д.). Сложность выполнения этой задачи связана с высокой скоростью процесса (длительность продувки 14 — 24 минуты). Формирование шлака необходимой основности и заданными свойствами зависит от скорости растворения извести в шлаке. На скорость растворения извести в шлаке влияют такие факторы, как состав шлака, его окисленность, условия смачивания шлаком поверхности извести, перемешивание ванны, температурный режим, состав чугуна и т. д. Раннему формированию основного шлака способствует наличие первичной реакционной зоны (поверхность соприкосновения струи кислорода с металлом) с температурой до 2500о. В этой зоне известь подвергается одновременному воздействию высокой температуры и шлака с повышенным содержанием оксидов железа. Количество вводимой на плавку извести определяется расчетом и зависит от состава чугуна и содержания SiO2 руде, боксите, извести и др. Общий расход извести составляет 5 — 8 % от массы плавки, расход боксита 0,5 — 2,0 %, плавикового штампа 0,15 — 1,0 %. Основность конечного шлака должна быть не менее 2,5.

Окисление всех примесей чугуна начинается с самого начала продувки. При этом наиболее интенсивно в начале продувки окисляется кремний и марганец. Это объясняется высоким сродством этих элементов к кислороду при сравнительно низких температурах (1450 — 1500о С и менее).

Окисление углерода в кислородно-конвертерном процессе имеет важное значение, т. к. влияет на температурный режим плавки, процесс шлакообразования и рафинирования металла от фосфора, серы, газов и неметаллических включений.

Характерной особенностью кислородно-конвертерного производства является неравномерность окисления углерода как по объему ванны, так и в течении продувки.

С первых минут продувки одновременно с окислением углерода начинается процесс дефосфорации — удаление фосфора. Наиболее интенсивное удаление фосфора идет в первой половине продувки при сравнительно низкой температуры металла, высоком содержании в шлаке (FeO); основность шлака и его количество быстро увеличивается. Кислородно-конвертерный процесс позволяет получить 2,5) достигается лишь во второй половине продувки. Степень десульфурации при кислородно-конвертерном процессе находится в пределах 30 — 50 % и содержание серы в готовой стали составляет 0,02 — 0,04 %.

Читать еще:  Как отпустить напильник в домашних условиях

По достижении заданного содержания углерода дутые отключают, фурму поднимают, конвертер наклоняют и металл через летку (для уменьшения перемешивания металла и шлака) выливают в ковш.

Полученный металл содержит повышенное содержание кислорода, поэтому заключительной операцией плавки является раскисление металла, которое проводят в сталеразливном ковше. Для этой цели одновременно со сливом стали по специальному поворотному желобу в ковш попадают раскислители и легирующие добавки.

Шлак из конвертера сливают через горловину в шлаковый ковш, установленный на шлаковозе под конвертером.

Течение кислородно-конвертерного процесса обусловливается температурным режимом и регулируется изменением количества дутья и введением в конвертер охладителей — металлолома, железной руды, известняка. Температура металла при выпуске из конвертера около 1600о С.

Во время продувки чугуна в конвертере образуется значительное количество отходящих газов. Для использования тепла отходящих газов и отчистки их от пыли за каждым конвертером оборудованы котел-утилизатор и установка для очистки газов.

Управление конвертерным процессом осуществляется с помощью современных мощных компьютеров, в которые вводится информации об исходных материалах (состав и количество чугуна, лома, извести), а также о показателях процесса (количество и состав кислорода, отходящих газов, температура и т. п.).

Разновидности кислородно-конверторного производства стали

Около 70% стали от общего объема мирового производства изготавливается конвертерным способом. До середины прошлого столетия для получения стали применялись бессемеровский и томасовский процессы. Однако в дальнейшем сталь начали производить усовершенствованным кислородно-конвертерным способом. В настоящее время предшественники современного метода практически не применяются.

Суть конвертерного производства

В конвертерном производстве применяются специальные сталеплавильные агрегаты, называемые конвертерами. Производство стали осуществляется путем продувки жидкого чугуна воздухом или кислородом. Данный металл содержит различные примеси, в том числе кремний, углерод и марганец. Примеси окисляются под действием кислорода и удаляются из расплава. Основным преимуществом конвертерного способа является то, что для работы сталеплавильного устройства не требуется топливо. Сталь расплавляется под действием тепла, которое выделяют окисляющиеся примеси.

Принцип бессемеровского способа

Впервые массовое получение жидкой стали стало возможным в 1856 году благодаря Г. Бессемеру – изобретателю из Англии. Он придумал, как нагреть металл до температуры, превышающей 1500°С. Именно такая температура необходима для того, чтобы расплавить металл с пониженным содержанием углерода.

Бессемеровский процесс предусматривает продувку расплава атмосферным воздухом. Для этих целей применяются конвертеры, у которых внутренняя часть камеры сгорания защищена динасовым кирпичом. Благодаря такой защите бессемеровский способ называют кислой футеровкой конвертера.

Плавка в бессемеровском сталеплавильном агрегате осуществляется путем заливки чугуна при температуре 1250–1300°С. Следует заметить, что для выплавки бессемеровских чугунов требуются железные руды с низким содержанием серы и фосфора.

Залитый чугун продувают воздухом, в результате чего происходит окисление углерода, марганца и кремния. При окислении образуются оксиды, формирующие кислый шлак. Продувку воздухом заканчивают после того, как углерод окислится до требуемых значений.

Далее металл через горловину сливают в ковш, попутно его окисляя. У такого способа присутствует один существенный недостаток, заключающийся в невысоком качестве конечного продукта, который получается слишком хрупким за счет неполного удаления серы и фосфора.

Принцип томасовского способа

В 1878 году англичанину С.Г. Томасу удалось устранить главный недостаток бессемеровского способа. Кислую футеровку конвертера он заменил основной. Внутренний защитный слой в ванной был выложен смолодоломитовым кирпичом. А чтобы удалить из металла большую часть примесей, он предложил использовать известь, функция которой заключалась в связывании фосфора.

Томасовский процесс позволил перерабатывать чугун с высоким содержанием фосфора. Поэтому наибольшее распространение данный способ получил в странах, где железные руды содержат много фосфора. Во всем остальном метод, изобретенный Томасом, мало чем отличается от предложенного Бессемером:

  • и в том, и в другом случае используется сталеплавильный агрегат, в который чугун подается сверху через отверстие в горловине;
  • через это же отверстие производится выпуск стали.
  • снизу сталеплавильный агрегат снабжен съемным днищем, что позволяет заменять его по мере выработки определенного срока службы;
  • дутье в полость сталеплавителя поступает через специальные сопла, расположенные в футеровке днища.

Как уже говорилось выше, слив стали производится через отверстие в горловине. Перевернуть многотонный агрегат позволяют цапфы в цилиндрической части конвертера. При томасовском процессе в сталеплавитель загружают известь, позволяющую получить основной шлак. Далее туда же заливают высокофосфористый чугун, нагретый до 1200–1250°С и подают дутье. При подаче дутья происходит окисление кремния, марганца и углерода. В основной шлак удаляются сера и фосфор. Продувка завершается тогда, когда содержание фосфора снизится до определенных показателей. Окончательным этапом, как и в бессемеровском процессе, является выпуск металла с последующим раскислением.

Принцип работы кислородного конвертера

Впервые кислородное дутье было запатентовано Г. Бессемером. Однако в течение продолжительного времени кислородно-конвертерный процесс не применялся, в связи с отсутствием массового производства кислорода. Первые опыты по продувке кислородом стали возможными в начале сороковых годов прошлого столетия.

Устройство кислородного конвертера осталось прежним:

  • камера сгорания изнутри защищена основной футеровкой;
  • однако вместо воздуха в нем применяется продувка кислородом;
  • подача кислорода осуществляется через водоохлаждаемые сопла.

На территории России применяются сталеплавители с верхней подачей кислорода.

Особенностью конвертерного способа с кислородной продувкой является скоротечность. Весь процесс расплавления металла занимает десятки минут. Однако во время работы требуется тщательно отслеживать содержание в чугуне углерода, температуры его расплава и прочие параметры, чтобы вовремя прекратить продувку.

Процесс сталеплавильного производства упростился, когда кислородные конвертеры оснастили автоматическими системами, усовершенствовали лабораторную технику и измерительные приборы. Усовершенствование кислородно-конвертерного процесса позволило повысить производительность, снизить себестоимость металла и повысить его качество.

Современные кислородные конвертеры могут работать в трех основных режимах:

  • с полным дожиганием окиси углерода;
  • с частичным дожиганием ОС;
  • без дожигания ОС.

Они позволяют производить сталь из чугуна различного состава.

Кислородный конвертер – описание процесса плавки

Кислородный конвертер – это стальной сосуд грушевидной формы. Его внутренняя часть защищена смолодоломитовым (основным) кирпичом. Вместимость сталеплавильного агрегата варьируется от 50 до 350 тонн. Сосуд распложен на цапфах и способен поворачиваться вокруг горизонтальной оси, что позволяет беспрепятственно заливать в него чугун, закладывать другие добавки и сливать металл со шлаком.

Чтобы получить конечный продукт, в конвертер заливается не только чугун, но и закладывают добавки. К ним относятся:

  • лом металла;
  • шлакообразующие материалы (железная руда, известь, полевой шпат, бокситы).

Конвертерный способ с кислородной продувкой предусматривает заливку в конвертер чугуна, нагретого до 1250–1400°С. Установив конвертер в вертикальное положение, в него подают кислород. Как только началась продувка, в расплавленный чугун вводят остальные компоненты, входящие в состав шлака. Перемешивание чугуна со шлаком осуществляется под действием продувки.

Так как концентрация чугуна гораздо выше, чем примесей, в процессе продувки происходит образование оксида железа, который растворяясь, обогащает металл кислородом. Именно растворенный кислород способствует уменьшению в металле концентрации кремния, углерода и марганца. А когда примеси окисляются, выделяется полезное тепло.

Особенностью основного шлака является большое содержание оксида кальция и оксида железа, которые в начале продувки способствуют удалению фосфора. Если же содержание фосфора превышает требуемый показатель, шлак сливают и наводят новый. Продувку кислородом заканчивают, когда содержание углерода в конечном продукте соответствует определенному параметру. После этого конвертер переворачивают и производят слив стали в ковш, куда добавляют раскислители и другие добавки.

Видео по теме: Основы кислородно конвертерного производства

Ссылка на основную публикацию
Adblock
detector