Как пользоваться омметром

Измерение сопротивления изоляции мегаомметром

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Приборы для измерения сопротивления

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом» пишется как «Ohm».

Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

Короткое замыкание, где его быть не должно.

Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах…

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

Читать еще:  Сварочный осциллятор из катушки зажигания

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов.

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.

Практическая работа с мультиметром DT-830B.

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

200 — на этом пределе измеряются сопротивления величиной до 200 Ом;

2000 — на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);

20k — на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);

200k — предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);

Ну, и наконец, 2000k — предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0 <— т.е. откалибровать прибор. Пределы измерения у приборов такого типа выбираются автоматически.

При любых измерениях касаться руками неизолированных частей щупов очень не рекомендуется. При отсутствии опыта не проводите измерения на аппаратуре находящейся под напряжением питания – это касается замера токов и напряжений.

Для практики измерим сопротивление постоянного резистора, номинал которого заранее известен. Он нанесён на корпус резистора. Все измерения производятся с помощью зажимов типа «крокодил» то есть пальцы рук ни к чему не прикасаются. При этом сопротивление человеческого тела не может зашунтировать измерительную цепь и искажать результаты измерений.

На снимке видно показания прибора: 690 Ом. Номинал данного резистора 680 Ом, то есть погрешность для данного резистора составляет чуть более одного процента.

Более подробно о том, как проводить замер сопротивления можно узнать из статьи измерение сопротивления цифровым мультиметром.

Все об омметрах

Зачастую чтобы найти сгоревшую деталь в схеме или обрыв проводника, требуется как минимум «прозвонка» отдельных цепей и их элементов. Эта задача неразрешима без омметра. Наряду с вольтметром и амперметром (в составе мультиметра) он вносит свою посильную помощь в работу мастера.

Когда изобрели омметр?

До изобретения омметра делались небезуспешные попытки создать чувствительный к малым токам гальванометр. Основоположником теории, лёгшей в основу принципа действия современного омметра, стал Георг Ом. Он подключил стрелочный гальванометр к батарее последовательно через резистор, имеющий конечное сопротивление R, и выяснил, что сила тока линейно зависит не только от напряжения батареи, но и от величины сопротивления, которое этот ток преодолевает. Закон Ома, открытый учёным в 1826 году – основа электробезопасности и работы омметров.

Впоследствии работа омметра была доработана другим физиком-изобретателем – Чарльзом Уитстоном. Тот включил гальванометр в диагональ резисторного моста. Дополнительные резисторы равны по значениям Ra и Rb. Ток, проходящий по гальванометру – нулевой, если измеряемое (Rx) и «шаблонное» (Rs) сопротивления равны. В 1843 году Уитстон опубликовал свою статью об этих опытах. С тех пор омметр стал полноценным измерительным прибором.

Назвать изобретателя вольтметра так и не удалось бы. Идея эта основана на законе Ома. С десяток учёных в XIX-XX вв. приложили усилия к модернизации аналогового омметра – вклад каждого из них бесценен.

Сегодня любой человек, хорошо знакомый с физикой и электрикой, строит аналоговый омметр на базе стрелочного миллиамперметра. Килоомметр строится на базе микроамперметра или милливольтметра, а мегаомметр – на базе вольтметра, гига- и тераомметр – на базе килоомметра. Недостаток омметров, измеряющих сопротивление от долей ома до одного килоома – существенное потребление тока батарейки в 1-3 ампера в час (время, в течение которого щупы замкнуты накоротко). Это вынуждает пользователя применять аккумулятор. Для правильной градуировки прибора по омической шкале в цепь включается калибровочный переменный резистор.

Характеристики и устройство

Омметр включает в себя:

  • стрелочный гальванометр;
  • источник стабилизированного питания (в простейшем случае – аккумулятор);
  • магазин сопротивлений, переключаемый на нужное с помощью многопозиционного переключателя;
  • шунт (для измерения сопротивления менее 1 Ом);
  • переменный резистор, настраивающий «ноль» перед началом измерений;
  • разъёмы для коннекторов, к которым присоединены провода с шупами на другом конце;
  • выключатель питания батарейки во избежание случайного соприкасания щупов и утечки её заряда.

Калибровочных резисторов может быть два – один подстраивает ноль грубо (быстро), другой – в десятки раз более точно. Калибровка нужна, так как со временем аккумулятор разряжается, понижая своё напряжение на выходе под нагрузкой (замкнутые накоротко или измеряемые эквивалентным сопротивлением щупы). Она занимает 1-3 секунды. Вся сборка помещена в ударопрочный корпус. Для удобства снятия показаний гальванометр чаще всего монтируют в корпусе в «лежачем» или «полулежащем» положении.

Важнейшими характеристиками омметра считаются:

  • точность (класс точности);
  • напряжение (ЭДС) питания батарейки или аккумулятора;
  • габариты и вес (носить с собой омметр, не помещающийся в кармане, неудобно);
  • ударо- и виброзащищённость (предусмотрены амортизирующие вставки из резины).

Из последнего следует, что бросать и трясти прибор нельзя. Стрелочный гальваномер имеет измерительную головку, уязвимую к виброударным воздействиям. При сильном ударе у стрелки может сломаться противовес – балансир, без которого её конец задевал бы за шкалу. В ряде случаев повреждается и возвратная пружина – плоская упругая спираль, возвращающая стрелку на нулевое деление после размыкания замеряющей цепи.

Принцип работы

Принцип действия прибора для измерения сопротивления заключается в следующем. В схему подключения цепи гальванометра включён переменный резистор и батарейка (или аккумулятор). По закону Ома малое сопротивление и большой ток уравновешены, и наоборот. Нулевое значение омметра находится не слева, как у вольтметра или амперметра, а справа. Шкала проградуирована «задом наперёд». Деления шкалы расположены таким образом, что визуальное расстояние на шкале для одного и того же интервала сопротивлений снижается. Например, делания располагаются справа налево в следующей последовательности: 0, 1, 2, 5, 10, 20, 50, 100, 500 Ом, 1 кОм, 5, 25, 200 кОм и «бесконечность». Последний символ – крайнее левое положение стрелки.

Читать еще:  Как плавить латунь в домашних условиях

При замкнутых щупах (включение цепи) резистор крутят до тех пор, пока стрелка прибора не остановится на условном нуле омметра. Это снизит потребление тока прибором до значений миллиамперметра, измеряющего ток короткого замыкания в маломощных цепях. Теперь можно измерить искомое сопротивление.

Классификация

По диапазону сопротивлений омметры подразделяются на:

  • микроомметры – измерение сопротивления до 1 мОм;
  • Милли омметры – до 1 Ом – применяются для оценки шунтов;
  • Омметры – до 1 кОм – применяют для позванивания линий, обмоток, электро спиралей, диодов, транзисторов и других элементов;
  • Кило омметры – 1000 Ом – 1 МОм;
  • Мегомметры – до 1 ГОм;
  • Гигрометры – до 1 ТОм, используются для оценки исправности изоляции и других не теплопроводящих сред.

Тераомметры применяются уже для оценки среды, разделяющей сильно удалённые друг от друга проводники. Условно сопротивление диэлектрика стремится к бесконечности. Сопротивление вакуума уже является таковым.

Не все омметры питаются от 1,5-9 вольт. Некоторые, к примеру, М-371, используют внешнее стабилизированное питание на 120 В. Существуют и иные особенности – например, вращающаяся шкала и неподвижный маркер-стрелка у омметра М-416. На все современные омметры действует ГОСТ 8.409-81, обновленный 1 июня 2019 года. По варианту исполнения это переносные и настольные (стационарные) устройства. Они отличаются габаритами. Например, профессиональный высокоточный омметр для электро испытательных лабораторий весь срок службы проработает в одном помещении. Примером здесь является щитовой прибор. А мобильный мультиметре можно носить с собой в кармане. Узкоспециализированные омметры классифицируют особо.

Аналоговый

Это всем известный стрелочный мультиметр. Он обладает стрелочным интерфейсом. Может быть усложнён – при замерах прибор конвертирует полученное значение сопротивления в напряжение, по закону Ома прямо пропорциональное ему. Выполнение этой стадии возложено на специальный узел в схеме омметра – операционный усилитель. В итоге на шкале омметра указывается искомое значение сопротивления.

Цифровой омметр содержит специальный измеряющий мост, уравновешиваемый по сопротивлению с помощью управляющей автоматики. В роли последней выступает отдельный микроконтроллер. Резистор, подключаемый к щупам прибора, даёт сигнал контроллеру через мост, и тот выставляет нужные значения равновесия моста. Затем данные обрабатываются в микропроцессоре программой, считанной из микросхемы ПЗУ, поступают в оперативную память и отображаются на дисплее. Полученное значение может быть передано с помощью внешних интерфейсов – по беспроводной или проводной сети передачи данных, считано и сохранено специальной программой на ПК, смартфоне или планшете пользователя.

Магнитоэлектрический

Такой омметр основан на магнитоэлектрической системе. Его основа – магнитоэлектрический измеритель. Он включается последовательно в цепь, сопротивление которой измеряется в данный момент. Интервал измеряемых значений – от 100 Ом до 10 МОм. В них измеряемое сопротивление и источник питания включены последовательно. Для запитывания всей цепи достаточно батарейки на 1,2-9 Вт. При использовании магнитоэлектрического измерителя в качестве мегаомметра может потребоваться напряжение до 120 В. Если же измеряемое сопротивление составляет всего до нескольких Ом, то резистор подключается параллельно, а не последовательно. Напряжение на омметре упадёт. Показанное значение и будет искомым сопротивлением. Недостаток – быстрый разряд батарейки.

Логометрический

Основа такого омметра – магнитоэлектрический логометр. Система построения – та же, что и у предыдущего типа. Диапазон измерений – 1-1000 МОм. Логометры работают на базе вычислений соотносящихся друг с другом сопротивлений. Результат такой работы – поиск оптимального (необязательно среднего) значения. Оно, в свою очередь, и указывается на шкале прибора. В качестве источника постоянного тока используется не батарейка, а ручной генератор.

Наименования и обозначения

Кроме наименований по измеряемому диапазону сопротивлений (от микро-до тера омметра), в общую классификацию также выделен измеритель сопротивления заземления. Также омметры маркируются по системе, на которой они основаны.

  • Мхх – магнитоэлектрические омметры.

Измерение электрического сопротивления (режим омметра)

Омметр используют для измерения сопротивления электрической цепи, сопротивления резисторов и проверки целостности соединительных проводов. Омметром мультиметра можно измерять только активное сопротивление, реактивное сопротивление емкостей и индуктивностей переменному току измерить омметром нельзя. В отличие от режимов измерения тока и напряжения, начинать измерения омметром можно как с самого меньшего предела, так и с самого большого предела измерения. Даже в случае значительной «перегрузки» прибор не выйдет из строя.

При измерениях сопротивления мультиметр подключается параллельно участку цепи, сопротивление которого необходимо определить. При этом данная цепь должна быть полностью обесточена и в ней не должен протекать электрический ток. Иначе мультиметр выйдет из строя.

При работе с мультиметром в режиме измерения сопротивления необходимо помнить, что:

— Электрическая цепь, сопротивление которой требуется измерить омметром должна быть полностью обесточена;

— Чем ближе измеренное значение к выбранному пределу измерения, тем точнее результат измерения. При индикации на дисплее символа «1» (перегрузка) необходимо переключиться на больший предел измерений;

— При измерении малых сопротивлений необходимо учитывать сопротивление щупов;

— При измерении больших значений сопротивлений (МОм — миллионы Ом) возможно длительное установление показаний — постепенный медленный рост показаний до их номинального значения;

— Исправность омметра проверяется замыканием щупов друг с другом. В этом случае прибор должен выдать показания близкие к нулю. Если при замыкании щупов мультиметр не показывает точного нуля (это может произойти из-за применения не родных щупов, разряда батарейки и т.п.) необходимо делать поправку к измеренному значению на величину ухода нуля.

Рекомендации по работе с цифровым мультиметром

В качестве источника питания для цифрового мультиметра лучше использовать щелочную (алкалиновую) девяти вольтовую батарейку типа «Крона». Применение солевых батареек негативно сказывается на точности измерения мультиметра, особенно у более современных моделей с подсветкой дисплея и при использовании мультиметра при низких температурах. Кроме того, если севшую солевую батарейку вовремя не поменять, то она может разгерметизироваться и вытекший электролит может повредить мультиметр.

Наиболее распространенной причиной выхода мультиметра из строя является установка поворотного переключателя выбора режима измерения не в то положение. Этому способствует и плохо читаемая, особенно в условиях плохой видимости, метка указателя на поворотном переключателя. Рекомендуем выделить эту метку контрастным цветом, например, каплей белой краски.

Еще одной частой, но не такой фатальной неисправностью мультиметра является обрыв провода щупов в месте их крепления (пайки) к жалу щупа. Происходит это из-за того, что при выполнении измерений щупы часто проворачиваются относительно своей оси, соединительный же провод при этом остается неподвижным. В результате постоянного скручивания и раскручивания медная жила соединительного провода рвется в месте пайки. Чтобы этого не происходило, достаточно зафиксировать соединительный провод относительно самого щупа, например, с помощью изоляционной ленты или термоусадочной трубки как это показано на фотографии.

Если же вы все же решите заменить вышедшие из строя щупы новыми, более качественными, то имейте ввиду, что в этом случае, ноль омметра мультиметра может «уйти» из-за изменения сопротивления проводов щупов.

При выполнении измерений мультиметром внутри оборудования КИП с навесным монтажом радиодеталей на жала щупов рекомендуется надеть отрезки ПВХ трубочек (кембриков) или термоусадочной трубки. Это необходимо для исключения случайного касания жалом щупа нескольких точек схемы с разными потенциалами (например, контактной площадки и вывода рядом стоящего радиоэлектронного компонента) в результате чего может произойти короткое замыкание. В случае использования изолирующих трубочек оголенными оставляют только самые кончики щупов (их конусную заостренную часть).

Как проводить измерения мегаомметром

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

  • Источника постоянного напряжения.
  • Измерителя тока.
  • Цифрового экрана или шкалы измерения.
  • Щупов, посредством которых напряжение от прибора передается на измеряемый объект.

Так выглядит стрелочный мегаомметр (слева) и электронный (справа)

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Работа с мегаомметром

При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

Один из вариантов современных мегаомметров

Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление. Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку. Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

Требования по обеспечению безопасных условий работы

Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

  1. Держать щупы только за изолированную и ограниченную упорами часть.
  2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

Как пользоваться мегаомметром: правила электробезопасности

Правила не очень сложные, но от их выполнения зависит ваша безопасность.

Как подключать щупы

На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть). На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия. В гнездо «земля» всегда подключается одинарный щуп.

Щупы для мегаомметра

На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

  • К тестируемым проводам, если надо проверить пробой между жилами в кабеле.
  • К жиле и «земле», если проверяем «пробой на землю».

Есть буква «Э» — этот конец вставляется в гнездо с такой же буквой

Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно. Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу. Для безопасности этот провод можно закрепить на сухом деревянном держаке.

Процесс измерения

Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими. Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей. Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины. В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции. Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

Как проводить измерения мегаомметром

После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

Измерение сопротивления изоляции кабеля

Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

Ссылка на основную публикацию
Adblock
detector