Плавка алюминия в индукционных печах

Pereosnastka.ru

Обработка дерева и металла

Для плавки алюминиевых сплавов используют тигельные печи, обогреваемые различными видами топлива, стационарные пламенные и электрические — сопротивления и индукционные.

1. Шихтовые материалы

В качестве исходных шихтовых материалов применяют первичные и вторичные металлы и сплавы, оборотные сплавы и лигатуры.

Первичный алюминий поставляется по ГОСТ 11069—74 в виде чушек массой 5, 15 и 1000 кг. Для производства алюминиевых сплавов обычно используют алюминий марок А5, А6 и АО, а для изготовления отливок высокоответственного назначения — алюминий особой и высокой чистоты.

Вторичные алюминиевые сплавы получают переплавкой и рафинированием лома и отходов. Они поставляются в виде чушек различных марок по ГОСТ 1583—73.

Свежие металлы. В состав алюминиевых сплавов входят цинк, магний, кремний, марганец, медь, бериллий, никель, железо, титан и другие элементы. Для алюминиевых сплавов обычно применяют цинк марок Ц1 и Ц2. Магний поставляется по ГОСТ 804—72 в чушках массой 8,0±1 кг. Ввиду большой склонности его к коррозии поверхность чушек подвергается антикоррозионной обработке. Кремний вводят в алюминиевые сплавы в виде чушкового силумина (сплав кремния с алюминием), поставляемого по ГОСТ 1521—76, а марганец —в виде лигатуры алюминий — марганец, содержащей около 10% марганца. Для приготовления лигатур используют марганец марок Mp1, Мр2 и Мр3.

Качество отливок в большой степени зависит от тщательности подготовки шихтовых материалов к плавке и способов их хранения. Они должны храниться в сухих крытых помещениях раздельно по маркам сплавов. Оборотный сплав должен очищаться от песка в очистных барабанах.

Лигатуры. При плавке алюминиевых сплавов, как правило, применяют двойные лигатуры — сплавы из двух компонентов. Введение лигатур обеспечивает получение сплава с точным содержанием элементов, что особенно важно для сплавов, содержащих магний, так как даже малые добавки его сказываются на свойствах сплавов.

Шихта для приготовления алюминиевых сплавов может состоять из чушкового алюминия, силумина, оборотного металла, лигатур и чистых металлов.

Рассмотрим пример расчета шихты для сплава АЛ5 при плавке в тигельной печи. Средний химический состав этого сплава: 5% кремния, 0,4% магния, 1,25% меди, остальное — алюминий. Допустимое содержание железа при заливке в металлические формы не должно превышать 1%. Расчет ведем на 100 кг сплава. Угар принимаем в следующих размерах, в %: кремния—1, магния — 3, меди — 1, алюминия — 1.

Для доведения до необходимого количества содержания кремния применяем чушковый силумин (с Si=13%), а магния и меди— алюминиево-магнневую и алюминиево-медную лигатуры.

3. Флюсы, рафинирующие и модифицирующие материалы

Для получения высококачественных сплавов осуществляют плавку под флюсом, рафинирование сплава для удаления неметаллических включений, а также модифицирование для получения мелкой структуры и повышения механических свойств.

Для рафинирования и модифицирования алюминиевых сплавов часто применяют универсальные флюсы, состоящие из смеси солей и криолита. Универсальные флюсы используются как в жидком, так и в порошкообразном состоянии.

4. Плавка в тигельных печах

Плавку алюминиевых сплавов в небольших объемах осуществляют в тигельных печах, работающих на нефти и газе..

Печь состоит из стального кожуха с футеровкой и вставленного в него сверху чугунного тигля. Последний своим широким фланцем крепится к стальному кольцу, перекрывающему шахту сверху, что обеспечивает полную изоляцию расплавленного металла от печных газов. Печь установлена на сварной или литой раме. Поворот ее осуществляется штурвалом. Для увеличения срока службы тиглей и уменьшения насыщения сплавов железом внутреннюю поверхность их рекомендуется окрашивать краской, состоящей из 60% кварцевого песка, 30% огнеупорной глины и 10% жидкого стекла.

5. Плавка в электрических печах

Плавку алюминиевых сплавов производят в электрических печах сопротивления, тигельных и отражательных печах, а также в индукционных.

Плавка в электрических отражательных печах. На предприятиях, где алюминиевые сплавы выплавляются в больших объемах, применяют электрические печи САН (печи сопротивления для алюминиевых сплавов, наклоняющиеся) и камерные стационарные.

Печь САН (рис. 2) имеет удлиненный металлический корпус, установленный на катках и укрепленный на фундаменте. Корпус изнутри выложен кирпичом. В торцах печи расположены две форкамеры, а в середине — центральная ванна. Свод печи выложен фасонными огнеупорными кирпичами, в гнездах которых уложены нагревательные спирали. Такие же спирали имеются и в форкамерах.

Шихту загружают через окна. Она плавится в форкамерах за счет тепла, отраженного от свода и стенок печи, и по наклонным плоскостям стекает в центральную ванну. Слив готового металла из печи осуществляется через лётку при повороте печи на опорных катках с помощью штурвала или электропривода.

Плавка в тигельных электрических печах сопротивления. При сравнительно небольших масштабах производства для плавки алюминиевых и магниевых сплавов применяют однотигельные печи сопротивления САТ -0,15 и САТ -0,25, а также двухтигельные печи СЖ.Б-230 и ОКБ -75.

Печи CAT выполнены в виде сварного цилиндрического кожуха, футерованного фасонным легковесношамотным кирпичом, и имеют теплоизоляцию. Нагрев чугунного тигля, установленного на литом чугунном кольце, производится нихромовыми нагревателями, которые уложены на полочках фасонных шамотных кирпичей и укреплены металлическими крючками. В нижней части печи имеется аварийное отверстие для выпуска сплава на случай прогорания тигля. Температура автоматически регулируется самопишущим потенциометром с помощью хромель-алюмелевой термопары.

Плавка в индукционных электрических печах. Различают индукционные печи со стальным сердечником и индукционные тигельные печи ИАТ . Печи со стальным сердечником широко применяются для плавки как алюминиевых, так и медных сплавов. Они имеют ряд преимуществ по сравнению с печами сопротивления: более высокую производительность, меньший удельный расход электроэнергии, возможность рафинирования металла в печи, обеспечивают высокое качество сплава с минимальным содержанием газов. В этих печах интенсивное движение металла происходит в устьях каналов, а поверхность жидкого сплава в самой печи находится в спокойном состоянии, что обеспечивает сплошность окисной пленки и предохраняет сплав от дальнейшего окисления.

В последнее время получили распространение бессердечниковые тигельные индукционные печи ИАТ емкостью 0,4—0,6 т и производительностью 0,235—2,0 т/ч.

6. Особенности технологии плавки и разливки алюминиевых сплавов

Для большинства алюминиевых сплавов принята одна технология плавки вне зависимости от конструкции печи.

Шихтовые материалы перед загрузкой тщательно очищают от загрязнений и подогревают до 100—150 °С для удаления с их поверхности влаги.

Плавка алюминиево-кремнистых сплавов. Как уже указывалось, лучше всего вести плавку в индукционных печах высокой или промышленной частоты и в электрических печах сопротивления. В качестве шихтовых материалов применяют чушковые силумины, первичный алюминий и оборотный металл (до 50% от массы шихты).

Плавку осуществляют в следующей последовательности. Печь или тигель нагревают до температуры 600—700 °С, загружают в них подогретые чушки силумина и предварительно очищенный в барабане оборотный сплав. После расплавления металл перегревают до 720—730 °С, рафинируют хлористым цинком (0,1% от массы шихты) и производят его модифицирование.

Рафинирование осуществляют путем погружения навески хлористого цинка на дно тигля с помощью «колокольчика», который медленно водят по дну тигля до полного прекращения выделения пузырьков газа.

Модифицирование смесью хлористых и фтористых солей калия и натрия производят путем покрытия ими очищенной от шлака поверхности сплава и выдержки в течение 12—14 мин. Затем соли рубят и замешивают в сплав в течение 2 мин, после чего модификатор снимают с поверхности сплава.

При использовании универсальных флюсов операции рафинирования и модифицирования совмещают.

Плавка алюминиевых сплавов, содержащих магний. Во избежание насыщения сплава вредными примесями — железом и кремнием — плавка ведется только в графитовых тиглях. Вспомогательный инструмент — счищалка, колокольчики и др. — также изготовляется из графита или титана.

В качестве шихтовых материалов применяют первичный алюминий высокой чистоты, магний и лигатуры алюминиево-бериллие-вую, алюминиево-титановую, алюминиево-циркониевую и оборотный сплав соответствующей марки (до 50—60% от массы всей шихты).

После нагрева тигля до температуры 600 °С. загружают чушки первичного алюминия и алюминиево-бериллиевую лигатуру. При температуре сплава 670—700 °С вводят лигатуры алюминий — титан и алюминий — цирконий и после полного растворения всех лигатур с помощью графитового колокольчика вводят магний. При этом необходимо следить, чтобы магний все время был погружен в сплав. После ввода магния сплав рафинируют. Затем с поверхности ванны снимают шлак, сплав тщательно перемешивают и опять снимают шлак, после чего производят разливку. На протяжении всей плавки не допускается перегрев сплава свыше 750 °С.

Для разливки применяют разливочные тигли и футерованные ковши емкостью до 1000 кг. Длина струи сплава должна быть минимальной. Тигли, ковши и разливочный инструмент обязательно прокаливают и покрывают специальными красками.

Плавка алюминиевых сплавов

При плавке и разливке на воздухе алюминиевые сплавы легко окисляются и насыщаются водородом, причем вредное влияние растворенных газов на качество отливок заметно уже при небольших количествах их в расплаве. Практикой установлено, что предельно допустимое количество водорода в алюминиевых сплавах, позволяющее получать качественное литье, оценивается 0,1—0,20 см 3 /100 г металла. Поэтому основное внимание при плавке уделяют предупреждению излишнего окисления и газонасыщения сплава. Учитывая вредное влияние примесей в алюминиевых сплавах, стремятся также получить сплав с минимальными количествами этих примесей, особенно железа.

Способы плавки алюминиевых сплавов зависят от применяемого типа печей и шихтовых материалов. Тип плавильных печей выбирают в зависимости от характера производства и назначения сплава.

Плавку алюминиевых сплавов производят в тигельных печах с нефтяным, газовым и электрическим обогревом, в пламенных отражательных печах, подовых электропечах сопротивления и индукционных печах. По назначению различают печи плавильные, раздаточные и плавильно-раздаточные.

Читать еще:  Состав формовочной смеси для литья алюминия

Наиболее качественный металл получается при плавке в индукционных печах. В этих печах плавка идет быстро, металл получается хорошо перемешанным и менее газонасыщенным. Отражательные печи, отапливаемые газом, применяют для плавки алюминиевых сплавов в цехах заготовительного литья, а также для переплавки отходов и стружки. В фасоннолитейных цехах распространены отражательные электропечи сопротивления.

Тигельные печи с различными способами нагрева применяют для плавки сравнительно небольших количеств металла (особенно они удобны как раздаточные печи).

Для плавки алюминиевых сплавов применяют преимущественно металлические сварные, литые, реже кованые тигли.

При плавке в металлических тиглях имеется опасность взаимодействия сплава с тиглем и загрязнение его примесями железа. Наиболее агрессивны по отношению к чугунным тиглям алюминиевые сплавы с кремнием, затем с магнием и менее с медью и цинком. Поэтому стенки тиглей перед плавкой покрывают специальными защитными красками, кроме того, подбирают составы чугуна или стали, более стойкие по отношению к алюминию. Например, серые чугуны более стойки, если в них больше графита и он находится в сильно разветвленной форме. Кремний в чугуне (как и кремний в расплаве) способствует взаимодействию металла с материалом тигля поэтому стремятся снижать содержание его в чугуне до нижнего предела, а в качестве графитизирующего элемента при выплавке используют алюминий (1,2—3,0%). Алюминий, кроме того, снижает окисляемость тигля и с наружной стороны. Содержание марганца должно быть минимальным. Высокую стойкость имеют тигли из чугуна с содержанием алюминия до 8% и с присадками хрома (0,4—1,0%), а также никеля и молибдена.

Рекомендуются следующие общие правила приготовления алюминиевых сплавов:

  1. При плавке на свежих шихтовых материалах и лигатурах в первую очередь загружают (целиком или по частям) алюминий, а затем растворяют лигатуры.
  2. Если плавка ведется на предварительном чушковом сплаве или на чушковом силумине, в первую очередь загружают и расплавляют чушковые сплавы, а затем подшихтовывают сплав необходимым количеством алюминия и лигатур.
  3. Сильно склонные к угару металлы, например цинк, магний, вводят в сплав в последнюю очередь, желательно под слой флюса.
  4. Если шихта состоит из отходов и чушковых металлов, очередность загрузки определяется количеством составных частей шихты: в первую очередь загружают в печь и расплавляют наибольшую часть шихты. Если, однако, отходы сильно загрязнены, то лучше их вначале расплавить, дегазировать и затем загружать чушковый металл.
  5. Если емкость печи и габариты шихты позволяют загружать различные ее составляющие одновременно, то вместе загружают то, что имеет близкую температуру плавления, например силумин, отходы, чушковый алюминий. Шихту подбирают с наименьшим количеством примесей для данного сплава. Укладку шихты в печь надо производить компактно, расплавление вести быстро. При загрузке в жидкую ванну твердую шихту необходимо предварительно подогревать.

Шихтовые материалы и возвраты необходимо хранить в сухих и теплых помещениях. Хранение их в сырых помещениях или же на открытом воздухе приводит к адсорбции влаги и усиленному окислению.

Шихту обычно составляют из отходов и 20—60% свежих материалов, тщательно взвешивают в соответствии с расчетными данными. Расчет шихты литейных алюминиевых сплавов проводят по данным ГОСТа (по среднему или оптимальному составу). В зависимости от особенностей сплавов и требований к свойствам отливки состав одних компонентов рассчитывают по минимальному количеству, других — по максимальному, а третьи компоненты рассчитывают по среднему количеству.

Например, при расчете шихты для приготовления слитков из алюминиевых сплавов АК4, АК5, АК6 и Д16 содержание меди в сплавах берут по верхнему пределу, что способствует снижению склонности сплавов к трещинообразованию, а содержание железа, магния и кремния принимают, наоборот, по нижнему пределу, для уменьшения ликвации.

Сплав АЛ4 имеет следующие пределы химического состава по ГОСТу: 8—10,5% Si, 0,25—0,5% Mn, 0,17—0,3% Mg, остальное Al. Обычно расчет ведут на содержание кремния 8,25—9,25%. Пониженное по сравнению со средним (9,25%) содержание кремния берут потому, что это способствует повышению прочности, уменьшению концентрированной усадки и ликвации сплава. Но чрезмерное понижение кремния вызывает уменьшение жидкотекучести и механических свойств, что особенно важно при литье тонкостенных деталей. Поэтому в таких случаях расчет ведут на содержание кремния 9,25%. Марганец вводят в сплав АЛ4 главным образом для устранения вредного влияния железа, но повышенное содержание марганца может вызвать сильную ликвацию. Поэтому если шихта сравнительно чистая по железу, то расчет ведут на среднее содержание марганца (0,37%), а если шихта сильно загрязненная, то количество марганца доводят до 0,45%, т. е. ближе к верхнему пределу. Особенно важно при составлении шихты сплава АЛ4 учитывать влияние магния на механические свойства этого сплава. При содержании магния на нижнем пределе сплав будет иметь пониженную прочность и твердость, но высокую пластичность.

Часто при выборе оптимального состава сплава приходится учитывать одновременно влияние на свойства сплава нескольких компонентов и затем выбирать наиболее удобные их сочетания. Например, сплав Д19 (3,8—4,3% Cu; 1,8—2,3% Mg) высокие жаропрочные свойства имеет в том случае, если суммарное количество меди и магния в сплаве будет равным 6,1%, что необходимо учитывать при расчете шихты. При плавке сплава АЛ19 (4,5—5,3% Cu, 0,6—1,0% Mn, 0,25—0,35% Ti, <0,3% Fe, <0,3% Si, 0,05% Mg, остальное Al) высокие прочностные и пластические свойства получаются в том случае, когда содержание меди и марганца находятся на среднем уровне марочного состава сплава (5% Cu, 0,8% Mn,0 3% Ti, остальное Al). Любые отклонения от среднего содержания этих металлов неблагоприятно сказываются на механических свойствах.

Поэтому при плавке некоторых алюминиевых сплавов (особенно многокомпонентных) приходится иногда вначале готовить из чистых металлов подготовительный сплав определенного химического состава, разливать его в чушки, анализировать состав и потом уже при условии соответствия заданному составу использовать его в качестве исходной шихты для приготовления рабочего сплава, непосредственно идущего для заливки литейных форм.

Стандартные сплавы, технология плавки которых достаточно хорошо отработана, обычно готовят однократно из шихтовых материалов и сразу же заливают металл в формы.

Расплавление шихты ведут форсировано, но не рекомендуется чрезмерно перегревать расплав. Если шихта мелкогабаритная, та для предохранения от чрезмерного окисления плавку осуществляют с применением покровных флюсов из смеси хлористых солей, которые загружают вместе с металлической шихтой в количестве 2—3% от массы металла. По достижении необходимого перегрева металл контролируют по технологическим пробам на газонасыщенность и загрязненность окисными включениями и в случае необходимости приступают к рафинированию и дегазации сплава. На всем протяжении плавки, начиная с подготовки шихтовых материалов, необходимо не допускать излишнего окисления и газонасыщения расплава. Для этого надо тщательно готовить к плавке шихту и очищать ее от посторонних примесей, а также держать чистыми печь и весь инструмент. Чем больше внимания и времени уделяется подготовке шихты и печи, тем меньше окислов и газов окажется в расплаве и тем легче отрафинировать расплав перед разливкой. Небрежная плавка, в том случае, когда используют загрязненную, влажную шихту, не просушивают футеровку печи (в расчете на последующую очистку расплава в результате рафинирования и дегазации в конце плавки), не дает хороших результатов, так как зачастую легче предотвратить попадание в расплав окислов и газов, чем затем освободиться от них.

Практика плавки алюминиевых сплавов показывает, что существует прямая связь между количеством окисных пленок в расплаве и его газонасыщенностью. Чем больше в сплаве окисных пленок, тем выше газонасыщенность. Поэтому излишнего перемешивания расплава следует избегать, особенно если плавку ведут без покровных флюсов.

Индукционная печь для плавки алюминия

Индукционная печь для плавки алюминия

Для плавки алюминия в крупносерийном производстве используют индукционные тигельные печи промышленной частоты. Также применяются среднечастотные печи для плавки алюминиевых сплавов. Индукционная печь для плавки алюминия представляет собой практически аналог устройств, используемых для плавления чугуна и стали. Современное производство требует от металлических изделий высокого качества, и при этом без сильного повышения цены. Именно таких результатов можно достичь при помощи нашего оборудования для плавки алюминия.

индукционная плавильная печь

По вопросам приобретения оборудования и обращайтесь в отдел маркетинга ООО «Термолит»

Тел./Ф.: (0619) 42-40-12; 42-02-19; 42-03-14

Моб.: (095)040-75-17; (098)63-502-63;

E-mail: info@termolit.ua;

Устройство печи для плавки алюминия

Индукционная печь состоит собственно из плавильной установки и вспомогательного оборудования. Установка – это опорный каркас из двух стоек с гидравлическими плунжерами, а также узловая составляющая индуктора. Установочный механизм изготовлен из листовой нержавеющей стали. Катушка индуктора выполнена из медной трубы, которая охлаждается холодной водой. Через последовательно соединенные гибкие кабели к индутору подключается электричество и вода. Наклон установки 95 градусов обеспечивается гидравлическими плунжерами. Питание оборудования происходит от частотного преобразователя тиристорного типа, благодаря которому трехфазный ток преобразуется в однофазный. На передней панели ТПЧ расположены индукторы, которые отображают работу преобразователя.

Частота регулируется автоматически на протяжении всей плавки. Система контроля протока и температуры процесса охлаждения печи, установлена на сливном коллекторе.

Индукционные плавильные печи в работе

Преимущества индукционной печи

Для открытия своего дела или расширения уже существующего производства, печь для плавки алюминия купить будет отличным решением. Это современное оборудование обладает большим количеством преимуществ, благодаря которым оно активно используется как на огромных металлургических заводах, так и в небольших литейных цехах.

Читать еще:  Химическое никелирование алюминия

Индукционное оборудование для плавки алюминия имеет ряд таких преимуществ:

  • высокая мощность плавки;
  • тепловая энергия очень быстро выделяется;
  • высокий КПД и производительность;
  • возможность достигать любую температуру, необходимую для плавки;
  • использование качественных и экологически чистых материалов;
  • высокий уровень пожарной безопасности (корпус печи надежно защищен);
  • безопасность эксплуатации;
  • загрязнение воздуха минимальное;
  • применение надежных комплектующих.
  • простота в использовании и обслуживании.

Такое оборудование для литья алюминия является одним из самых востребованных в металлургии. Тигельные печи имеют много вариантов: различаются по размерам тиглей, по температурному диапазону, конструкции, а также организации плавильного процесса.

Промышленное индукционное оборудование от ООО «Термолит»

Предприятие «Термолит» на сегодняшний день является лидером как на отечественном, так и на зарубежном рынке индукционного оборудования. Высокая квалификация и опыт сотрудников, а также новейшее оборудование гарантируют самое высокое качество производимой продукции. Комплексное техническое оснащение позволяет выполнять самые сложные заказы клиентов.

Структура условного обозначения ИТПЭ — ХХ/ХХХ ТГ Пример- ИТПЭ-0,4/0,35 ТГ1

Электрические печи для плавки и приготовления алюминиевых сплавов

Плавку и приготовление алюминиевых сплавов проводят в электрических печах следующих типов [35-38]:

  • • отражательных печах сопротивления;
  • • индукционных канальных печах;
  • • индукционных тигельных печах.

Индукционные канальные и тигельные печи обладают большой производительностью по расплавлению и перегреву металла. Наиболее распространены такие печи для получения высококачественных сплавов, а также при производстве сплавов со специальными свойствами, когда не требуется больших объемов производства.

Особенность индукционных канальных и тигельных печей — естественная циркуляция металла в каналах и ванне, вызванная неравномерным распределением электродинамических сил. Циркуляция металла оказывает положительное воздействие на процесс приготовления сплава, заключающееся в ускорении выравнивания температуры в объеме печи, снижении локального перегрева металла, выравнивании химического состава сплава и т.д. Однако для осуществления ряда технологических операций, а также с целью повышения надежности и эксплуатационных характеристик печей, возникает необходимость управления характером и интенсивностью циркуляции металла в печи.

Эскиз индукционной канальной печи представлен на рис. 1.2, а. Она состоит из огнеупорной ванны (1), футеровки (2) и индукционной единицы, в состав которой входит канал (3), соединенный с ванной печи, магнитопровод (4) и индуктор (5).

Основным элементом, определяющим технико-экономические и эксплуатационные характеристики индукционной канальной печи, является индукционная единица. Конструкция индукционной единицы определяется выплавляемым в печи металлом. На рис. 1.2, б, представлен эскиз индукционной единицы для плавки алюминия, состоящей из магнитопровода (1), индуктора (2), продольных каналов (3), соединенных с ванной печи (4), и поперечного канала (5).

Для повышения эксплуатационных характеристик индукционной канальной печи индукционные единицы могут оснащаться устройствами для создания вращательного движения металла [39; 40]. Вращательное движение металла в каналах обеспечивает ряд положительных эффектов:

  • — коагуляцию, в результате которой неметаллические включения скатываются в газоокисные конгломераты шарообразной формы и легко удаляются из расплава;
  • — разность скоростей вращения жидкого металла в продольных каналах, приводящую к возникновению поступательного движения металла, что улучшает тепломассообмен между каналами и ванной печи;
  • — снижение скорости зарастания продольных каналов окислами алюминия [41].

На сегодняшний день разработаны электромагнитные вращатели, работающие как на принципе электромагнитного экранирования, так и питающиеся от сторонних источников энергии.

В устройствах, использующих принцип электромагнитного экранирования (рис. 1.3, а), вращающий момент в продольных каналах индукционной единицы получается за счет взаимодействия магнитного потока Фэ от вихревых токов 1в, индуцированных в металлическом экране (1), с магнитным полем рассеяния Фа индуктора (2) при частичном экранировании поверхности каналов от магнитного потока рассеяния катушки индуктора. На рис. 1.3, а показана индукционная единица, где в качестве электромагнитного экрана использован металлический каркас (3) продольных каналов. Для этого в металлокар- касе выполняются разрезы (4) поперек линий вихревых токов таким образом, чтобы неразрезанная часть каркаса обеспечивала требуемую конфигурацию путей замыкания вихревых токов. Недостатком данного устройства является пониженная механическая прочность каркасов, а также невозможность регулирования скорости и направления вращения металла.

Электромагнитные вращатели, реализованные на принципе электромагнитного экранирования, позволяют получить скорость вращения металла до 30 об/мин.

Рис. 1.2. Эскиз индукционной канальной печи (а) и индукционная единица для плавки алюминия (б)

Рис. 1.3. Электромагнитные вращатели

Их общий недостаток — частичное размагничивание магнитного потока индуктора и невозможность обеспечить условия, при котором вращающий момент будет максимальным, то есть пространственный и временной сдвиг на 90°.

Более эффективным способом создания вращающегося магнитного поля в продольных каналах индукционной единицы является использование дополнительных катушек, питающихся от стороннего источника энергии. На рис. 1.3, б показана схема, в которой дополнительные катушки охватывают продольные каналы. Вращающий момент в каналах возникает за счет взаимодействия магнитного потока Фдк дополнительных катушек (1) с магнитным потоком рассеяния Фа

индуктора (2). Эффективность способа обусловлена тем, что ток /дк, создающий магнитный поток дополнительных катушек, может регулироваться как по величине, так и по фазе.

Индукционные тигельные печи широко используются в производстве высококачественных сплавов, они особенно эффективны при небольших объемах производства. Печь состоит из огнеупорного тигля (1), индуктора (2), магнитопровода (3) и металлокаркаса (4) (рис. 1.4, а). Характер распределения электродинамических сил в расплаве приводит к возникновению естественной двухконтурной циркуляции металла. Приготовление сплавов, компоненты которых имеют разную плотность и плохую растворимость друг в друге, требует повышения интенсивности перемешивания. Конструкция индукционной тигельной печи, в которой необходимая интенсивность перемешивания достигается с помощью дополнительных обмоток и двух конденсаторов, один из которых последовательно соединен с основной обмоткой и источником питания, а другой подключен к дополнительным обмоткам, которые размещены вокруг основной и соединены последовательно и встречно, как показано на рис. 1.4, б [42]. Число витков дополнительных обмоток и емкости конденсаторов выбраны таким образом, чтобы выполнялось условие резонанса между индуктивно связанными основным и короткозамкнутым контурами.

Рассматриваемая печь (рис. 1.4, б) содержит тигель (1), основную катушку (2), вокруг которой расположены две дополнительные катушки (3 и 4), соединенные последовательно и встречно, конденсаторы (5 и 6), один из которых соединен с дополнительными катушками и образует короткозамкнутый контур. Количество витков дополнительных катушек неодинаково. Основная обмотка (2) с последовательно соединенным с ней конденсатором (6) подключена к источнику однофазного переменного напряжения, образуя основной контур.

Рис. 1.4. Эскиз индукционной тигельной печи (а) и схема индуктора с дополнительными обмотками (б)

Такая конструкция обмотки печи позволяет интенсифицировать циркуляцию металла в печи и тем самым существенно повысить эффективность перемешивания сплавов.

Отражательные печи сопротивления широкое распространение получили в качестве миксеров для приготовления и выдержки алюминиевых сплавов [43]. Наиболее часто используют два типа миксеров: стационарные и поворотные (наклонные). Недостатком стационарных миксеров является непостоянная скорость истечения расплава из летки миксера в кристаллизатор литейной машины, которая уменьшается вместе с высотой расплава в миксере. Непостоянство скорости разливки вызывает неоднородность структуры слитка по его длине и нередко приводит к выбраковке слитков. В связи с этим в последнее время для обеспечения неизменной скорости разливки используют поворотные миксеры, которые за счет поворота печи обеспечивают постоянную подачу металла в литейную машину.

Миксер сопротивления (рис. 1.5, а) состоит из металлического каркаса (1), футеровки (2), электронагревателей (3), форкамеры (4), ванны (5). Для осуществления перемешивания металла в ванне печь может быть оснащена электромагнитным перемешивателем (6).

Основные проблемы, которые приходится решать при эксплуатации отражательных печей, это зашлаковывание и перегрев нагревателей, высокий перепад температур в расплаве, большие тепловые потери.

Комплексный подход к решению проблем, возникающих при эксплуатации миксера сопротивления, описан в [44]. В основу конструкции электрического миксера заложено повышение его тепловой эффективности за счет использования прямой теплопередачи между нагревателями, огнеупорным слоем футеровки подины и расплавом, а также увеличение конвективной теплопередачи в расплаве. Задача повышения энергетической эффективности миксера решается за счет того, что электрические нагреватели (1) устанавливают в огнеупорном слое футеровки (2) подины миксера, и они защищены расплавостойким высокотеплопроводным кожухом (рис. 1.5, б). Данная конструкция имеет ряд преимуществ перед известными:

  • — обеспечивается прямой контакт между нагревателями, футеровкой подины ванны и нижними слоями расплава, что повышает нагрев расплава и активизирует в нем конвективный теплообмен;
  • — выравнивается температура по объему расплава, исключается перегрев поверхностных слоев металла, что снижает адгезию газов, окисление металлического расплава, образование шлаков;

Рис. 1.5. Отражательная печь с подвесными нагревателями (а) и печь сопротивления с нагревателями в подине (б)

  • — снижаются тепловые потери печи за счет уменьшения высоты рабочего пространства, а также температуры под сводом до 750 °С при исключении нагревателей из подсводового пространства;
  • — снижается рабочая температура нагревателей до 800-850 °С при расположении их в подине, что значительно увеличивает их срок службы;
  • — электропечь-миксер может применяться для приготовления сплавов при температурах до 1000-1100 °С без перегрева нагревателей и нарушения целостности конструкции печи;
  • — расположение нагревателей в огнеупорном слое футеровки подины печи защищает их от интенсивного зашлаковывания и обеспечивает стабильный температурный режим при эксплуатации, что увеличивает срок службы нагревателей.

Принцип индукционной печи для плавки различных металлов

Индукционная печь используется для плавки цветных и черных металлов. Агрегаты такого принципа действия применяют в следующих сферах: от тончайшего ювелирного дела до промышленной плавки металлов в крупных размерах. В данной статье будут рассмотрены особенности различных индукционных печей.

Читать еще:  Как заварить алюминий в домашних условиях

Индукционные печи для плавки металла

Принцип работы

Индукционный нагрев положен в основу действия печи. Другими словами, электрический ток образовывает электромагнитное поле и получается тепло, которое используется в промышленных масштабах. Этот закон физики изучается в последних классах общеобразовательной школы. Но понятие электрического агрегата и электромагнитных индукционных котлов нельзя путать. Хоть в основе работы и там и тут лежит электричество.

Как это происходит

Генератор подключается к источнику переменного тока, который поступает в него через индуктор, находящийся внутри. Конденсатор задействуется для создания контура колебания, в основе которого лежит постоянная рабочая частота, на которую настраивается система. При возрастании напряжения в генераторе до предела в 200 В индуктор создает магнитное поле переменного действия.

Замыкание цепи происходит, чаще всего, посредством сердечника из ферромагнитного сплава. Переменное магнитное поле начинает взаимодействие с материалом заготовки и создает мощный поток электронов. После вступления в индукционное действие электропроводящего элемента в системе происходит возникновение остаточного напряжения, которое в конденсаторе способствует возникновению вихревого тока. Энергия вихревого тока преобразовывается в тепловую энергию индуктора и происходит нагревание до высоких температур плавления искомого металла.

Тепло, производимое индуктором, применяют:

  • для расплавления мягких и твердых металлов;
  • для закаливания поверхности металлических деталей (например, инструмента);
  • для обработки в термическом режиме уже произведенных деталей;
  • бытовых потребностей (обогрев и кулинария).

Краткая характеристика различных печей

Разновидности приборов

  • Тигельные индукционные печи используют для расплавки металлов, главным их принципом, отличным от работы других агрегатов, является отсутствие сердечника.
  • Канальные агрегаты индукционного действия представляют собой своеобразный трансформатор, которая имеет стальной наконечник – магнитный привод. Нагрузка подается через вторичную обмотку, выполненную одним витком.
  • Индукционные приборы вакуумного действия, который процесс плавки выполняют в условиях полного вакуума, который буквально вытягивает из металла все примеси.
  • Плавильные тигельные печи – индукторы на массу плавки от 5 до 200 кг с преобразователем по принципу транзистора.

Индукционные тигельные печи

Является наиболее распространенным типом печного индукционного нагрева. Отличительной чертой, отличной от других видов является то, что в ней переменное магнитное поле появляется при отсутствии стандартного сердечника. Тигель в форме цилиндра размещается внутри индукторной полости. Печь, или тигель изготавливается из материала, который прекрасно сопротивляется огню и подключается к переменному электрическому току.

Положительные аспекты

  • энергия выделяется при загрузке металла, отсутствует необходимость в установке промежуточных элементов;
  • металлические сплавы, состоящие из нескольких составляющих, после завершения плавки получают однородную консистенцию и одинаковый химический состав в любом выбранном объеме;
  • при помощи регуляторов давления представляется возможным проводить восстановительный, окислительный или нейтральный процесс;
  • средние частоты переменного тока показывают высокие значения удельной мощности, что ставит тигельные печи в ряд высокопроизводительных агрегатов;
  • печь может работать с перерывами между загрузкой металла, на последующей плавке это не отразится, переход от одного вида металла к другому происходит без длительной перенастройки параметров;
  • тигельные агрегаты легко поставить на автоматическое управление, они простые в эксплуатации и легко перестраиваются на любой из режимов;
  • в результате процесса получаются качественные славы, состоящие из многих компонентов, температура имеет постоянное и одинаковое значение в пределах ванны, а остатки и отходы быстро расплавляются, отсутствуют перегревы.

Тигельные агрегаты относят к экологически чистым источникам тепла, окружающая среда не загрязняется от плавки металлов.

В работе тигельных печей присутствуют недостатки:

  • при технологической обработке используются шлаки пониженной температуры;
  • произведенная футеровка тигельных печей имеет низкую стойкость против разрушения, больше всего это заметно при резких скачках температур.

Имеющиеся недостатки не представляют особенных трудностей, достоинства тигельного индукционного агрегата для плавки металла очевидны и сделали такой тип приборов популярным и востребованным среди широкого круга потребителей.

Канальные печи индукционной плавки

Такой тип нашел широкое применение в плавильном деле цветных металлов. Эффективно используется для меди и медных сплавов на основе латуни, мельхиора, бронзы. Активно плавят в канальных агрегатах алюминий, цинк и сплавы в составе этих металлов. Широкое использование печей этого типа ограничено из-за невозможности выполнить футеровку, стойкую к разрушениям, на внутренних стенках камеры.

Расплавленный металл в канальных печах индукционного типа совершает тепловое и электродинамическое движение, что обеспечивает постоянную однородность смешивания компонентов сплава в печной ванне. Использование канальных печей индукционного принципа оправдано в случаях, если к расплавленному металлу и изготовленным слиткам предъявляются особые требования. Сплавы получаются качественными в плане коэффициента насыщения газами, присутствия в металле органических и синтетических примесей.

Индукционные канальные печи работают по типу миксера и предназначаются для выравнивания состава, поддержки постоянной температуры процесса, и выбора скорости разлива в кристаллизаторы или формы. Для каждого сплава и состава литья существуют параметры специальной шихты.

Достоинства

  • подогревание сплава происходит в нижней части, к которой нет воздушного доступа, что уменьшает испарение с верхней поверхности, нагретой до минимальной температуры;
  • канальные печи относят к экономичным индукционным печам, так как происходящее расплавление обеспечивается маленьким расходом электрической энергии;
  • печь имеет высокий коэффициент полезного действия благодаря применению в работе замкнутого контура магнитного провода;
  • постоянная циркуляция в печи расплавленного металла вызывает ускорение плавильного процесса и способствует однородности перемешивания компонентов сплава.

Недостатки

  • стойкость каменной внутренней футеровки снижается при использовании высоких температур;
  • футеровка разрушается при плавлении химически агрессивных сплавов из бронзы, олова и свинца.
  • при плавлении загрязненной низкосортной шихты происходит засорение каналов;
  • поверхностный шлак на ванне не нагревается до высокой температуры, что не позволяет проводить операции в промежутке между металлом и укрытием и расплавлять стружку и скрап;
  • канальные агрегаты плохо переносят перерывы в работе, что заставляет постоянно хранить в жерле печи значительное количество жидкого сплава.

Полное удаление расплавленного металла из печи ведет к ее быстрому растрескиванию. По этой же причине невозможно выполнить быструю перестройку с одного сплава на другой, приходится делать несколько промежуточных плавок, получивших название балластных.

Вакуумные печи индукционного действия

Этот вид имеет широкое применение для плавления сталей высокого качества и никелевых, кобальтовых и железных сплавов жаростойкого качества. Агрегат успешно справляется с плавкой цветных металлов. В вакуумных агрегатах варят стекло, обрабатывают высокой температурой детали, производят монокристаллы.

Печь относят к высокочастотному генератору, расположенному в изолированном от внешней среды индукторе, пропускающем ток высокой частоты. Для создания вакуума из него насосами откачивают воздушные массы. Все операции по введению добавок, загрузке шихты, выдаче металла производится автоматическими механизмами с электрическим или гидравлическим управлением. Из вакуумных печей получают сплавы с небольшими примесями кислорода, водорода, азота, органики. Результат намного превосходит открытые печи индукционного действия.

Жаропрочную сталь из вакуумных печей применяют в инструментальном и оружейном производстве. Некоторые сплавы из никеля, с содержанием никеля и титана являются химически активными, и получить их в других видах печей проблематично. Вакуумные печи выполняют розлив металла поворотом тигеля во внутреннем пространстве кожуха или вращением камеры с неподвижно закрепленной печью. Некоторые модели имеют в дне открывающееся отверстие для слива металла в установленную емкость.

Тигельные печи с транзисторным преобразователем

Применяют для ограниченного веса цветных металлов. Они мобильные, имеют небольшой вес и с легкостью переставляются с места на место. В комплектацию печи входит высоковольтный транзисторный преобразователь универсального действия. Позволяет подобрать мощность, рекомендуемую для подключения в сети, а соответственно ей тип преобразователя, который необходим в этом случае с изменением параметров веса сплава.

Транзисторная индукционная печь широко применяется для металлургической обработки. С ее помощью нагревают детали в кузнечном деле, закаляют металлические предметы. Тигли в транзисторных печах выполняют из керамики или графита, первые предназначены плавить ферромагнитные металлы, такие как чугун или сталь. Графит устанавливается для плавления латуни, меди, серебра, бронзы и золота. На них плавят стекло и кремний. Алюминий хорошо плавится посредством чугунных или стальных тиглей.

Что такое футеровка печей индукционного действия

Ее предназначение состоит в защите печного кожуха от разрушающего действия высоких температур. Побочным действием является сохранение тепла, следовательно, повышается результативность процесса.

Тигель в конструкции индукционной печи выполняется одним из способов:

  • способом выемки в маленьких по объему печах;
  • набивным способом из огнеупорного материала в виде кладки;
  • комбинированным, сочетающим керамику и прокладку буферного слоя в промежутке кладки и индикатора.

Футеровка выполняется из кварцита, корунда, графита, шамотного графита, магнезита. Во все эти материалы домешивают добавки, улучшающих характеристики футеровки, уменьшающих изменения объема, улучшающих спекание, увеличивающие стойкость слоя к агрессивным материалам.

Для выбора того или иного материала для футеровки учитывают ряд сопутствующих условий, а именно, вид металла, цену и огнеупорные свойства тигля, срок службы состава. Правильно подобранный состав футеровки должен обеспечить технические требования для проведения процесса:

  • получение слитков высокого качества;
  • наибольшее количество полноценной плавки без проведения ремонтных работ;
  • безопасную работу специалистов;
  • стабильность и непрерывность проведения плавильного процесса;
  • получение качественного материала при использовании экономного количества ресурсов;
  • применение для футеровки распространенных материалов по невысокой цене;
  • минимальное влияние на окружающее пространство.

Применение индукционных печей позволяет получить сплавы и металлы отменного качества с минимальным содержанием различных примесей и кислорода, что повышает их применение в сложных областях производства.

Ссылка на основную публикацию
Adblock
detector