Как остановить коррозию алюминия

Основные виды коррозии алюминия

Алюминий и, в разной степени, его сплавы обладают высокой стойкостью к коррозии даже без какого-либо специального защитного покрытия.

Естественное оксидное покрытие

Естественная поверхность алюминия, которая возникает в ходе изготовления алюминиевого изделия, например, прессованием, прокаткой или литьем, имеет высокое сопротивление коррозии в большинстве типов окружающей среды. Это происходит потому, что свежая поверхность алюминия спонтанно и мгновенно образует тонкий, но очень эффективный оксидный слой, который предотвращает дальнейшее окисление металла.

Эта оксидная пленка является непроницаемой и, в отличие от оксидных пленок других металлов, например, железа, очень прочно «прикрепляется» к основному металлу. При каком-либо механическом повреждении эта пленка мгновенно восстанавливается, залечивается.

Естественный оксидный слой и является главной причиной хорошего сопротивления алюминия к коррозии. Это покрытие является стойким в средах с кислотностью – водородным показателем рН – от 4 до 9.

Три главных вида коррозии алюминия

Наиболее частыми видами коррозии алюминия являются:

  • гальваническая (контактная) коррозия;
  • язвенная (точечная) коррозия;
  • щелевая коррозия.

Коррозия под напряжением, которая ведет к образованию трещин, является более специфическим видом коррозии. Она случается в основном в высокопрочных алюминиевых сплавах, например, сплавах AlZnMg, когда они подвергаются длительным растягивающим напряжениям в присутствии коррозионной среды. Этот тип коррозии обычно не происходит в сплавах серии 6ххх, то есть сплавах AlMgSi.

Гальваническая коррозия алюминия

Гальваническая коррозия может случаться тогда, когда два различных металла находятся в непосредственном контакте и между ними образовался электролитический мост. Менее благородный металл в этой комбинации становится анодом и корродирует. Более благородный металл становиться катодом и находится под защитой от коррозии.

В большинстве комбинаций с другими металлами алюминий является менее благородным металлом. Поэтому алюминий подвержен более высокому риску гальванической коррозии, чем другие строительные материалы. Однако, этот риск меньше, чем это обычно считается.

Необходимые условия: контакт и влага

Гальваническая коррозия алюминия происходит только тогда, когда одновременно:

  • есть контакт с более благородным металлом (или другим электрическим проводником с более высоким химическим потенциалом, чем у алюминия, например, графитом;
  • между двумя металлами находится электролит с хорошей проводимостью, чаще всего, вода с растворенными солями.

Гальваническая коррозия не происходит в сухой воздушной атмосфере, например, внутри нормального жилого помещения. Нет большого риска гальванической коррозии и чистой сельской атмосфере. Вместе с тем, риск гальванической коррозии необходимо всегда принимать в расчет в атмосферах с высоким содержанием хлоридов, например, в районах вблизи морей и океанов.

Алюминий и оцинкованная сталь

Могут быть проблемы с гальванической коррозией и в паре алюминия с оцинкованной сталью. Цинковое покрытие оцинкованной стали будет сначала защищать алюминий от коррозии. Однако, эта защита снижается, когда поверхность стали начинает обнажаться по мере расходования цинка. Горячее цинкование стали дает большую толщину цинкового покрытия, чем электрохимическое цинкование и обеспечивает более длительную защиту алюминия. Поэтому в агрессивной атмосфере в контакте с алюминием применяют только оцинкованную сталь горячего цинкования.

Электрическая изоляция

Там, где различные металлы применяются в контакте, гальванической коррозии можно избежать путем электрической изоляции одного металла от другого. Пример такого решения для болтового соединения между алюминиевым и стальным листом приведен на рисунке 1. Между головкой болта и поверхностью алюминия может возникнуть электролит, но электроизолирующая шайба не даст возможности протекать гальваническому электрическому току и коррозии не произойдет. С другой стороны в контакте алюминиевого и стального листа отсутствует возможность попадания влаги, электролит не образуется и коррозия не происходит.

Рисунок 1 – Электрическая изоляция алюминия от стали

Разрыв электролитической цепи

В больших конструкциях, там, где применение электроизоляции затруднительно, применяют альтернативное решение – предотвращение электролитического мостика между двумя металлами. Окраска поверхности – это один из путей сделать это. Чаще всего лучшим вариантом является окраска поверхности катода, то есть более благородного металла.

Катодная защита

Катодная защита от коррозии может достигаться двумя путями. Чаще всего – это установка анода из менее благородного металла в прямом металлическом контакте с алюминием. Этот менее благородный металл «жертвует» собой, то есть корродирует вместо алюминия. Поэтому его называют жертвенным анодом.

Чтобы такой жертвенный анод работал, он должен быть в жидком контакте с защищаемой алюминиевой поверхностью. Для защиты алюминия в качестве жертвенных анодов чаще всего применяют цинк и магний. Пример катодной защиты показан на рисунке 2.

Другим путем получения катодной защиты является подсоединение алюминиевого объекта к отрицательному полюсу выпрямителя тока.

Рисунок 2 – Катодная защита алюминиевого винта судна

Язвенная коррозия алюминия

Для алюминия именно язвенная коррозия является наиболее частым видом коррозии. Она также случается только в присутствии электролита (воды или влаги), который содержит растворенные соли, обычно хлориды.

Эта коррозия обычно выглядит как очень маленькие ямки, которые на открытом воздухе достигают максимальной глубины незначительной части толщины металла. Глубина этих ямок может быть больше в воде и почве.

Предотвращение язвенной коррозии

Язвенная коррозия является в основном вопросом эстетическим, потому что, в практическом смысле, никогда не снижает прочности алюминиевых изделий.

Проявление язвенной коррозии, конечно, бывает более серьезным на алюминии с естественной поверхностью, то есть поверхностью без какой-либо защитной обработки. Защитная обработка поверхности алюминия (анодирование, окраска или другие методы нанесения покрытий) успешно защищает его от язвенной коррозии.

Для предотвращения язвенной коррозии применяют также катодную защиту (см. выше).

Конструирование дренажа

Очень важно проектировать алюминиевые профили и другие алюминиевые изделия так, что они имели возможность дренажа осадков и быстрого высыхания поверхности. Профили, которые могут подвергаться воздействию влаги, не должны иметь углов или карманов, в которых скапливается вода. Каждый профиль, в котором может скапливаться вода, должен иметь дренажные отверстия (рисунок 3).

Рисунок 3 – Конструктивный дренаж в алюминиевых профилях

Эффективный дренаж (рисунок 4) и вентилирование «мокрых» алюминиевых профилей значительно снижает риск появления на них язвенной коррозии.

Рисунок 4 – Дренажные отверстия в алюминиевом профиле

Щелевая коррозия алюминия

Сущность щелевой коррозии

Щелевая коррозия может возникать в узких, наполненных жидкостью щелях. Возникновение такой коррозии в алюминиевых профилях маловероятно. Однако, значительная щелевая коррозия может возникать в морской атмосфере или на наружной поверхности кузовов транспортных средств. В ходе транспортирования и хранения алюминиевых профилей иногда может собираться вода в щелях между смежными алюминиевыми поверхностями, которая вызывает поверхностную коррозию в виде «водяных пятен» (рисунок 4).

Рисунок 5 – Сущность щелевой коррозии

Источником этой воды является дождь или конденсация влаги. Эта вода по капиллярному механизму буквально засасывается в пространство между двумя металлическими поверхностями. Конденсация влаги может возникать тогда, когда холодный материал помещают в теплое помещение. Разность между ночной и дневной температурами может также вызывать конденсацию, когда алюминий хранится снаружи под плотным тентом, который препятствует вентиляции.

Предотвращение щелевой коррозии

На соединяемые поверхности наносят герметики или двухсторонний скотч. Это предотвращает попадание в зазор между ними воды и предотвращает возникновение щелевой коррозии.

В некоторых случаях вместо соединения на заклепках и винтах применяют клеевое соединение. Это также противодействует образованию щелевой коррозии.

Рисунок 6 – Герметизация соединения предотвращает щелевую коррозию

Коррозия алюминия, меди и латуни – изучаем причины и защитыные меры

Возможна ли коррозия алюминия, меди и иных цветных металлов или их сплавов? Принято считать, что они менее чувствительны к разному виду разрушения. В принципе, так оно и есть, однако это вовсе не означает, что эти материалы не нуждаются в дополнительной защите. Ниже будет приведена общая информация не только о том, что собой представляет столь губительная коррозия, но и как предотвратить ее.

1 Что такое коррозия металлов и сплавов?

В целом этот процесс проявляется как разрушение материала в результате его взаимодействия с внешней средой. Причем ему подвержены как металлы, так и неметаллы (керамика, дерево, полимеры и т. д.). Сюда же мы можем отнести и старение резины, и разрушение пластика. Что же насчет металлических сплавов, так в этом случае наиболее явным примером коррозии является всем известная ржавчина.

Основной причиной данного явления служит недостаточная термодинамическая устойчивость того либо иного материала к каким-либо веществам, которые мы можем обнаружить в контактирующей среде. Так, например, резиновые покрытия портятся из-за взаимодействия с кислородом, полимеры разрушаются после многочисленных контактов с атмосферными осадками, а на большинство металлов и их сплавов губительно влияет чрезмерная влажность. Кроме того, значительно на скорость протекания процесса влияет и температура окружающей среды, в основном, чем данный параметр выше, тем скорее осуществляется разрушение.

Читать еще:  Как варить алюминий электросваркой

2 Коррозия меди и других цветных металлов – признаки и особенности

Вообще коррозия алюминия и многих его сплавов встречается достаточно редко, а все благодаря особенностям данного металла – он способен пассивироваться в различных агрессивных средах. Другими словами, он переходит в пассивное состояние, так, например, при взаимодействии с воздухом на его поверхности образуется оксидная пленка, выполняющая защитные функции. Причем в зависимости от условий толщина пассивного слоя может быть различной.

Также пленка устойчива и к воздействию влаги, а вот в кислой среде нет однозначного ответа, тут все зависит от вида кислоты. Таким образом, изделия из алюминия практически не боятся ни азотной, ни уксусной (при нормальной температуре), а вот щавелевая, серная, муравьиная и соляная губительно влияют на металл. Но особенно этот материал боится щелочной среды, так как при воздействии данного вещества разрушается оксидная пленка алюминия.

Теперь рассмотрим, в каких случаях встречается коррозия меди и содержащих ее сплавов. Этот металл разрушается при взаимодействии с серой и разными ее соединениями. Также она боится окислительных и некоторых аэрированных неокислительных кислот, солей и тяжелых металлов. Что же насчет водной среды, так в этом случае все зависит от того, насколько она насыщена кислородом, чем его содержание больше, тем скорее происходит разрушение.

Признаки коррозии латуни выражаются в основном в растрескивании (во влажной среде интенсивность повышается) и обесцинковании этого сплава, последнему же способствуют растворы, которые содержат ионы хлора. Также происходят данные процессы при взаимодействии материала с аммиаком, растворами различных кислот-окислителей и солей. Кроме того, губительными для латуни являются ртуть, оксиды азота, трехвалентное железо и медь. Еще одной причиной растрескивания могут послужить растягивающие напряжения.

3 Защита сплавов и способы остановить коррозию

Итак, немного узнав об особенностях разрушения цветных металлов, стоит уделить внимание вопросу, как остановить нежелательную коррозию алюминия, его сплавов и иных выше описываемых материалов. Безусловно, лучшим вариантом будет предупредить ее, но для этого необходимо знать некоторые нюансы.

Так, например, максимальной коррозионной стойкостью обладает сверхчистый алюминий, еще для работы с ним и его сплавами следует подбирать наиболее подходящую среду. Кроме того, защита может осуществляться и такими способами, как создание на поверхности изделия лакокрасочного покрытия, металлизация, шлифовка либо дробеструйная обработка, вследствие которых возникают остаточные напряжения сжатия.

Если же металл уже поражен, тогда нужно хорошенько очистить поврежденные участки и обработать их специальными антикоррозионными растворами, купить которые можно довольно легко практически на любом строительном рынке.

Что же насчет изделий из меди и ее сплавов, так и в этом случае меры борьбы практически такие же, как и в случае с алюминием. Условия эксплуатации, а именно pH среды, тут менее значимы, разрушение будет все равно в ощутимой степени. Действительно, произошла ли коррозия меди в сильно кислой среде или же какой-то другой, в любом случае элемент нуждается в тщательной очистке. Затем наносится защита, в качестве которой может выступать краска, лак, масло или же иной металл, такой как олово и алюминий. Метод, когда поверхность покрывают тонким слоем расплавленного олова, называется лужение.

Дабы предотвратить коррозию латуни в результате обесцинкования, в ее состав добавляют немного мышьяка, этот процесс называется легированием. Нейтрализовать же действие аммиака способны кислотные оксиды, однако с ними также нельзя переусердствовать. Кроме того, если речь идет об изготовлении латунных труб и иных изделий, то следует отказаться от таких операций, как безоправочное волочение, а также сборка с «натягом», дабы избежать возникновения растягивающих напряжений. Таким можно представить краткое руководство по защите от коррозии алюминия, латуни, меди и их сплавов. Конечно, особенностей невероятное множество, но об этом лучше поговорить в отдельных статьях.

Способы борьбы с коррозией алюминия

Алюминий – широко распространенный в промышленности и быту металл. Окисление алюминия на воздухе не происходит. Его инертность обусловлена тонкой оксидной пленкой, защищающей его. Однако под влиянием определенных факторов из окружающей среды этот метал все же подвергается разрушительным процессам, и коррозия алюминия — не такое уж и редкое явление.

Виды коррозии

Окисляется алюминий в атмосфере быстро, но на небольшую глубину. Этому препятствует защитная окисная пленка. Окисление ускоряется выше температуры плавления алюминия. Если нарушается целостность оксидной пленки, алюминий начинает корродировать. Причинами истончения его защитного слоя могут стать различные факторы, начиная с воздействия кислот, щелочей и заканчивая механическим повреждением.

Коррозия алюминия – саморазрушение металла под воздействием окружающей среды. По механизму протекания выделяют:

  • Химическую коррозию – происходит в газовой среде без участия воды.

  • Электрохимическую коррозию – протекает во влажных средах.

  • Газовое разрушение – но сопровождает нагрев и горячую обработку алюминия. В результате взаимодействия кислорода с металлами возникает плотная окисная пленка. Вот почему алюминий не ржавеет, как и все цветные металлы.

На видео: электрохимическая коррозия металлов и способы защиты.

Причины коррозии алюминия

Коррозионная стойкость алюминия зависит от нескольких факторов:

  • чистоты – наличия примесей в металле;
  • воздействующей среды – алюминий может одинаково подвергаться разрушению и на чистом сельском воздухе и в промышленно загрязненных районах;
  • температуры.

Во многих случаях малоконцентрированные кислоты могут растворить алюминий. От возникновения коррозии не защищает естественная окисная пленка.

Мощные разрушители – фтор, калий, натрий. Алюминий и его сплавы корродируют при воздействии химических соединений брома и хлора, растворов извести и цемента.

Коррозия алюминия и его сплавов происходит в воде, воздухе, оксидах углерода и серы, растворах солей. Морская вода приводит к ускоренному разрушению. Алюминий считается активным металлом, но при этом отличается хорошими коррозионными свойствами.

Выделяют два основных фактора, которые влияют на интенсивность коррозийного процесса:

  • степень агрессивности воздействующей окружающей среды – влажность, загрязненность, задымленность;
  • химическая структура.

Алюминий не подвергается коррозии в чистой воде. Не влияют на защитную оксидную пленку нагревание и пар.

Проявление коррозии алюминия

Выделяют следующие виды коррозии алюминия и его сплавов:

  • Поверхностная – наиболее распространенная, приносит наименьший вред, легко заметна и быстро поддается устранению.
  • Локальная – разрушения наблюдаются в виде углублений и пятен. Опасный вид коррозии в силу своей незаметности. Встречается в труднодоступных частях и узлах металлических конструкций.
  • Нитеподобная, филигрань – наблюдается под покрытиями из органики, на ослабленных местах поверхности.

Любой из видов коррозии конструкций из алюминия является причиной разрушения.

Это сокращает срок эксплуатации изделий. В гальванической паре алюминий может корродировать, при этом он защищает другой металл.

Естественных антикоррозийных свойств алюминия и его сплавов недостаточно. Поэтому механизмы, агрегаты, конструкции и изделия из металла нуждаются в дополнительной защите.

Способы борьбы с коррозией

Защита от коррозии производится несколькими способами:

  • Механическое лакокрасочное защитное покрытие.
  • Электрохимическая защита – покрытие более активными металлами;
  • Покрытие алюминия порошковыми составами, так называемый процесс аллюминирования;
  • Высоковольтное анодирование;
  • Химическое оксидирование;
  • Применение ингибиторов коррозии.

Механическое покрытие

Как защитить алюминий от коррозии? Чаще всего применяют механический способ – нанесение слоя краски.

Покройте краской изделие и вы убедитесь в действенности этого способа. Окрашивание бывает мокрым и сухим, или порошковым. Эти технологии усовершенствуются. При мокром окрашивании лакокрасочные слои наносят после защиты алюминия составом, содержащим соединения цинка и стронция. Металлическую основу тщательно подготавливают: защищают, шлифуют, сушат. Грунт наносят поэтапно.

Когда растворитель из грунтовочной смеси полностью исчезнет, поверхность можно покрывать изолирующим составом: масляным или глифталиевым лаком.

Специальные составы помогают остановить коррозию и защищают алюминиевые конструкции от химикатов, бензина, различного вида масел. Выбор покрытия зависит от условий последующей эксплуатации металлического изделия:

  • молотковые – применяют для получения конструкций различных цветовых оттенков, используемых в декоре;
  • бакелитовые – наносят под высоким давлением, заполняя микротрещины и поры.

Порошковое окрашивание требует тщательной очистки поверхности от жира и различных отложений. Это достигается погружением в щелочные или кислотные растворы с добавлением смачивателей. Далее на алюминиевые конструкции наносится слой хроматных, фосфатных, циркониевых или титановых соединений. После этого он не будет окисляться.

Читать еще:  Пищевой алюминий марка сплава

После просушки материала на окислившийся участок наносят защитный полимер. Чаще всего используются полиэфиры, стойкие к механическому, химическому и термическому воздействию. Применяют полимеризованный уретан, эпоксидные и акриловые порошки.

Оксидирование алюминия

Оксидирование алюминия протекает при постоянном токе под напряжением 250 В. Наращивание защитной пленки происходит при комнатной температуре с водяным охлаждением. Не требуется импульсного источника. Пленки получаются плотными и прочными в течение 45-60 минут.

На плотность и цвет оксидного покрытия влияет температура электролита:

  • пониженная температура образует плотную пленку яркого цвета;
  • повышенная – формирует рыхлую пленку, требующую дальнейшей окраски.

Образовать защиту алюминия от коррозии можно электрохимической реакцией. Процесс разделен на несколько этапов:

1. На стадии подготовки алюминиевое изделие обезжиривают, погружая его в раствор щавелевой кислоты.

2. После промывания водой опускают в щелочной раствор, чтобы удалить неравномерно образовавшийся оксидный слой.

3. Для дополнительной окраски алюминиевые изделия погружают в соответствующие растворы солей. Чтобы заполнить образовавшиеся поры, металлический материал обрабатывают паром.

4. Затем изделие подвергают сушке. Анодное оксидирование может проводиться с применением переменного тока.

Для защиты от коррозии применяют химическое оксидирование – менее затратное, не требующее специального электрического оборудования и квалификации исполнителей. Используется несложный химический состав.

В процессе алюминирования полученная оксидная пленка толщиной в 3 мкм имеет салатный цвет, обладает высокими электроизоляционными свойствами, не пориста, не окрашивается.

Коррозия алюминия возникает вследствие находящихся рядом металлов, которые окислились. Предотвращению этот процесса способствует изоляция. Это могут быть прокладки из резины, битума, паронита. При покрытии ржавчиной применяются лак и другие изолирующие материалы. Других способов избавиться от этой проблемы пока нет.

Три способа удалить окисную плёнку с поверхности алюминия (1 видео)

Коррозия алюминия

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Для реакции Al 3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.

Температура плавления алюминия — 660 °C.

Плотность алюминия — 2,6989 г/см 3 (при нормальных условиях).

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!

Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.

Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.

При нагревании алюминий может реагировать с некоторыми неметаллами:

2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;

4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;

2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.

Коррозия алюминия на воздухе (атмосферная коррозия алюминия)

Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо Al2O3•H2O.

Реакция взаимодействия алюминия с кислородом:

Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.

Алюминий достаточно стоек как на чистом сельском воздухе, так и находясь в промышленной атмосфере (содержащей пары серы, сероводород, газообразный аммиак, сухой хлороводород и т.п.). Т.к. на коррозию алюминия в газовых средах не оказывают никакого влияния сернистые соединения – его применяют для изготовления установок переработки сернистой нефти, аппаратов вулканизации каучука.

Коррозия алюминия в воде

Коррозия алюминия почти не наблюдается при взаимодействии с чистой пресной, дистиллированной водой. Повышение температуры до 180 °С особого воздействия не оказывает. Горячий водяной пар на коррозию алюминия влияния также не оказывает. Если в воду, даже при комнатной температуре, добавить немного щелочи – скорость коррозии алюминия в такой среде немного увеличится.

Взаимодействие чистого алюминия (не покрытого оксидной пленкой) с водой можно описать при помощи уравнения реакции:

При взаимодействии с морской водой чистый алюминий начинает корродировать, т.к. чувствителен к растворенным солям. Для эксплуатации алюминия в морской воде в его состав вводят небольшое количество магния и кремния. Коррозионная стойкость алюминия и его сплавов, при воздействии морской воды, значительно снижается, если в состав метала будет входить медь.

Коррозия алюминия в кислотах

С повышением чистоты алюминия его стойкость в кислотах увеличивается.

Коррозия алюминия в серной кислоте

Для алюминия и его сплавов очень опасна серная кислота (обладает окислительными свойствами) средних концентраций. Реакция с разбавленной серной кислотой описывается уравнением:

Концентрированная холодная серная кислота не оказывает никакого влияния. А при нагревании алюминий корродирует:

При этом образуется растворимая соль – сульфат алюминия.

Al стоек в олеуме (дымящая серная кислота) при температурах до 200 °С. Благодаря этому его используют для производства хлорсульфоновой кислоты (HSO3Cl) и олеума.

Коррозия алюминия в соляной кислоте

В соляной кислоте алюминий или его сплавы быстро растворяются (особенно при повышении температуры). Уравнение коррозии:

Аналогично действуют растворы бромистоводородной (HBr), плавиковой (HF) кислот.

Коррозия алюминия в азотной кислоте

Концентрированный раствор азотной кислоты отличается высокими окислительными свойствами. Алюминий в азотной кислоте при нормальной температуре исключительно стоек (стойкость выше, чем у нержавеющей стали 12Х18Н9). Его даже используют для производства концентрированной азотной кислоты методом прямого синтеза

При нагревании коррозия алюминия в азотной кислоте проходит по реакции:

Коррозия алюминия в уксусной кислоте

Алюминий обладает достаточно высокой стойкостью к воздействию уксусной кислоты любых концентраций, но только если температура не превышает 65 °С. Его используют для производства формальдегида и уксусной к-ты. При более высоких температурах алюминий растворяется (исключение составляют концентрации кислоты 98 – 99,8%).

В бромовой, слабых растворах хромовой (до10%), фосфорной (до 1%) кислотах при комнатной температуре алюминий устойчив.

Слабое влияние на алюминий и его сплавы оказывают лимонная, масляная, яблочная, винная, пропионовая кислоты, вино, фруктовые соки.

Щавелевая, муравьиная, хлорорганические кислоты разрушают металл.

На коррозионную стойкость алюминия очень сильно влияет парообразная и капельножидкая ртуть. После недолгого контакта металл и его сплавы интенсивно корродируют, образуя амальгамы.

Коррозия алюминия в щелочах

Щелочи легко растворяют защитную оксидную пленку на поверхности алюминия, он начинает реагировать с водой, в результате чего металл растворяется с выделением водорода (коррозия алюминия с водородной деполяризацией).

Также оксидную пленку разрушают соли ртути, меди и ионы хлора.

Как остановить коррозию алюминия

При анодировании добавки адсорбируются растущим анодным оксидным слоем и тормозят коррозионное растравливание пленки и металла как при анодировании, так и при эксплуатации анодированных деталей. Повышение защитного эффекта особенно заметно при наличии в коррозионной среде хлорид-ионов. Снижение концентрации добавок в электролите приводит к ослаблению защитного действия оксидных покрытий. Верхний концентрационный предел обусловлен растворимостью добавок.

Испытания, проведенные на образцах сплава АМГ, показали: во всех случаях оксидные слои, полученные в предлагаемом электролите, имели более высокое защитное действие, чем при анодировании в стандартном электролите, а именно:

— на оксидных покрытиях, полученных в предлагаемом электролите, время капельной пробы значительно выше, чем для получения в известном электролите без добавок.

Этот вывод относится как к электролитам, содержащим хлорид-ионы, так и без них.

— повышенное защитное действие оксидной пленки обнаружилось на образцах, анодированных в предлагаемом электролите, при испытаниях в камере солевого тумана.

— при испытании по ГОСТ 9.031-74 образцы, анодированные в известном электролите, не выдержали испытания, на них обнаружены области явных коррозионных повреждений. В то же время, образцы, которые анодировались в предлагаемом электролите, показали 100%-ную устойчивость.

Читать еще:  Можно ли варить алюминий постоянным током

— заслуживает внимания и тот факт, что образцы, анодированные в стандартном электролите, обнаружили пониженную коррозионную стойкость по сравнению с образцами из предлагаемого электролита (по результатам испытаний в камере солевого тумана и по капельной пробе).

— следует особо отметить, что наиболее высокие показатели защитных свойств оксидных пленок получены в электролите, где присутствуют обе органические добавки: производное акридина и производное фенилсульфинамида.

Информация о добавке содержится в статье О.Н.Чупахина с сотрудниками, ДАН СССР,1969, том 188, №2, с.376-378 и в статье А.В.Харченко и др.,»Журнал органической химии», 1980, т.16, вып.4, с.754-758.

Оксидное композиционное покрытие на алюминии и его сплавах

Изобретение относится к гальванотехнике, а именно к способам получения композиционного покрытия анодным оксидированием алюминия и его сплавов. Покрытие получают оксидированием в электролите, содержащем ультрадисперсные алмазы размером 0,001 — 0,120 мкм в количестве 0,05 — 56 г/л. Способ позволяет повысить твердость, износостойкость, антифрикционные свойства при малом расходе композиционного материала по простой технологии.

Поскольку процесс оксидирования протекает за счет металла матрицы (детали), необходимым условием роста пленки является возникновение пор в результате взаимодействия оксидной пленки с электролитом (чаще всего — с кислотой) и протекание тока.

Оксидное покрытие состоит из двух слоев: пористого толстого внешнего слоя и внутреннего тонкого слоя (барьерный слой).

Неорганическое оксидное композиционное покрытие (далее — композиционное покрытие) алюминия и его сплавов (далее — алюминия) представляет собой неметаллическую матрицу (пористую пленку, в основном, из Al2O3) — своеобразный каркас, заполненный удерживаемыми в ее порах частицами солей, оксидов металлов, металлов, неметаллов. Наполнение пленки осуществляется за счет адсорбционных, физико-химических и химических сил. Такие покрытия обладают повышенными физико-механическими характеристиками, износостойкостью, повышенными антикоррозионными и электрофизическими свойствами, улучшенной цветовой гаммой.

В качестве электролитов анодного оксидирования используют, как правило, водные растворы серной, хромовой, щавелевой кислот, их смеси, щелочной раствор полибората натрия.

Примененные в данном изобретении ультрадисперсные алмазы (УДА) или иначе кластерные алмазы представляют собой частицы, по форме близкие к сферическим или овальным, не имеющие острых кромок (неабразивные). Такие алмазы образуют седиментационно и коагуляционно устойчивые системы в электролитах как при рабочей концентрации компонентов, так и при повышенной (в концентратах электролитов).

В настоящее время синтез УДА производится чаще всего путем подрыва специально подготовленных зарядов из смесевых составов тротил-гексоген во взрывных камерах, наполненных неокислительной средой. Получаемая при этом алмазная шихта (смесь алмазов с неалмазными формами углерода) подвергается химической очистке, самой совершенной из которых является обработка алмазной шихты в среде азотной кислоты при высоких температурах и давлении с последующей промывкой.

УДА имеют классическую кубическую (алмазную) кристаллическую решетку с большими поверхностными дефектами, что обусловливает значительную поверхностную энергию таких кристаллов. Избыточная энергия поверхности частиц УДА компенсируется путем образования многочисленных поверхностных групп, образуя на поверхности оболочку («бахрому») из химически связанных с кристаллом гидроксильных, карбонильных, карбоксильных, нитрильных, хиноидных и прочих групп, представляющих собой различные устойчивые сочетания углерода с другими элементами используемых ВВ — кислородом, азотом и водородом.

Существовать без такой оболочки в обычных условиях микрокристаллиты УДА не могут — это неотъемлемая часть кластерных нано-алмазов, в значительной мере определяющая их свойства.

Т. о. , УДА сочетают в себе парадоксальное начало — сочетание одного из самых инертных и твердых веществ в природе — алмаза (ядро) с достаточно химически активной оболочкой в виде различных функциональных групп, способных участвовать в различных химических реакциях. Кроме того, такие кристаллы алмаза несмотря на компенсацию части неспаренных электронов за счет образования поверхностных функциональных групп имеют еще достаточно большой их избыток на поверхности, т.е. каждый кристаллик алмаза представляет собой, по сути, множественный радикал.

Все это множество разнородных свойств определяет их необычное поведение в различных процессах, в том числе в анодном оксидировании алюминия.

Попытки введения в электролиты оксидирования твердых, не растворяющихся в воде ультрадисперсных частиц двуокиси кремния, нитридов металлов, не привели к позитивному изменению свойств поверхностного оксидного слоя.

Напротив, УДА, имеющие отрицательный заряд, в электролите при наложении ЭДС устремляются к аноду (алюминий и его сплавы) и внедряются в образующиеся при окислении поверхности поры, удерживаясь там после разрядки не только механически, но и с помощью Ван-дер-Ваальсовых и других физико-химических сил. При этом наполнение образуется настолько плотное, что привес оксидной пленки увеличивается в 2-3,5 раза (при одинаковой толщине — без и с использованием УДА). Износостойкость такой пленки возрастает в 10-13 раз, существенно увеличиваются коррозионная стойкость и электроизоляционность.

Т. о. , использование кластерных алмазов для получения анодных оксидных пленок на алюминии и сплавах приводит к одновременному наполнению пленок нерастворимыми УДА непосредственно во время процесса электролиза и существенному улучшению свойств получаемого неметаллического неорганического композиционного покрытия, а именно:

— кластерные алмазы образуют устойчивые дисперсии в электролитах оксидирования;

— малая масса (малая инерционность) алмазных кластеров обеспечивает эффективный массоперенос частиц алмаза к оксидируемой поверхности, это позволяет работать при высоких плотностях тока;

— кластерные алмазы благодаря своей высокой физико-химической активности обеспечивают глубокое проникновение в поры оксидной пленки и плотную упаковку своих частиц, в результате чего образуется высокодисперсная структура композиционного покрытия с повышенной микротвердостью, износостойкостью;

— наполнение оксидной пленки УДА приводит к возрастанию адгезии к металлической подложке и когезии пленки;

— повышение качества покрытия достигается, в том числе, при относительно малом, а самое главное, регулируемом содержании алмазов в покрытии 0,2 — 10 мас.%, что делает процесс экономичным;

— композиционное оксидно-алмазное покрытие имеет высокую коррозионную стойкость;

— эффективный массоперенос алмазов к пористой анодной пленке и внутри ее обеспечивает равномерное наполнение ими пленки, в том числе на эквипотенциальных поверхностях.

Комплекс свойств оксидно-алмазного покрытия, получаемого по предлагаемому способу, и простота процесса делают такой способ конкурентноспособным

с любым из известных способов получения наполненных оксидных пленок.

Водно-дисперсионная антикоррозионная грунт-эмаль

Изобретение относится к водно-дисперсионным лакокрасочным материалам, предназначенным для защиты от коррозии металлических поверхностей, эксплуатируемых в агрессивных атмосферных условиях, в том числе в условиях повышенной влажности. Может использоваться как грунтовка и как самостоятельное лакокрасочное покрытие. Грунт-эмаль включает акриловую дисперсию, антикоррозионные пигменты и наполнители, диспергатор, загуститель и воду. Для повышения антикоррозионных свойств покрытия в составе грунт-эмали используют водорастворимый ингибитор коррозии — смесь калий октадеканоата, трикалий фосфата, 2,2′,2″-Нитрилотриэтанола и поверхностно-активное вещество — техническая смесь полиэтиленгликолевых эфиров моноалкилфенолов, улучшающая смачиваемость и адгезию лакокрасочного покрытия к металлической поверхности. Технический результат — повышение экологической безопасности при проведении окрасочных работ и высокие антикоррозионные свойства покрытия при эксплуатации в агрессивных атмосферных условиях, в том числе в условиях повышенной влажности.

Задачей предлагаемого изобретения является создание малотоксичной наноингибированной водно-дисперсионной антикоррозионной грунт-эмали с высоким уровнем противокоррозионных свойств в агрессивных атмосферных условиях с повышенной влажностью.

Поставленная задача достигается тем, что в состав водно-дисперсионной грунт-эмали взамен фосфатно-кальциевых кронов вводятся, наряду с малотоксичным фосфатом цинка, водорастворимый органический ингибитор коррозии пассивирующего типа, не содержащий соединения хрома, и поверхностно-активное вещество, обеспечивающие адгезионно-ингибирующее действие на металлическую поверхность.

Новизна технического решения определяется подбором компонентов в оптимальных количествах, способных при высыхании лакокрасочного покрытия формировать на поверхности металла тонкие наноразмерные пленки комплексных соединений, улучшающих адгезию покрытия к металлу и его противокоррозионные свойства.

Предлагаемая водно-дисперсионная антикоррозионная грунт-эмаль по сравнению с прототипом имеет лучшие антикоррозионные свойства. Грунт-эмаль не содержит в своем составе соединений хрома. Использование грунт-эмали по заявленному изобретению для защиты крупногабаритных металлоконструкций обеспечивает высокие антикоррозионные свойства покрытия в агрессивных атмосферных условиях и экологическую безопасность при проведении окрасочных работ.

Рассмотрев плюсы и минусы представленных вариантов защиты от коррозии алюминия и его сплавов, можно сделать следующий вывод: наиболее дешёвыми и менее трудоёмкими в производстве являются способы использования электролита анодирования и водно-дисперсной грунт-эмали. Они в значительной мере улучшают антикоррозионные свойства, в сравнении с известными покрытиями, алюминия и его сплавов.

Однако наиболее перспективным является получение оксидного композиционного покрытия с использованием УДА. Помимо улучшения антикоррозионных свойств, повышается износостойкость, электрофизические свойства. Использование этого открытия может значительно увеличить время между сроками ремонта планера ЛА.

Ссылка на основную публикацию
Adblock
detector